Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins ...Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.展开更多
During orthodontic treatment,we can achieve differential movements by using photobiomodulation(PBM)as an adjuvant before applying force.We can expect a greater bone density that initially resists movement while applyi...During orthodontic treatment,we can achieve differential movements by using photobiomodulation(PBM)as an adjuvant before applying force.We can expect a greater bone density that initially resists movement while applying PBM to the other teeth to achieve an accelerating effect.The proposed protocol is to use an 810 nm laser at 0.1W power,applying between 4 and 6J per tooth for 22 s on the vestibular and lingual root surfaces,following the axial axis of the tooth.The energy density depends on the tip selected in the instrument.Normal bone remodeling cannot be avoided by applying high doses of PBM.PBM should be applied before orthodontic force to reduce tooth movement.In addition,PBM can be used during force application to teeth that require acceleration to achieve differential movement in orthodontic treatments.The protocol is the same in both scenarios.展开更多
Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infr...Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.展开更多
Increasing evidence indicates that mitochonarial lission imbalance plays an important role in derayed neuronal cell death. Our previous study round that photo biomodulation improved the motor function of rats with spi...Increasing evidence indicates that mitochonarial lission imbalance plays an important role in derayed neuronal cell death. Our previous study round that photo biomodulation improved the motor function of rats with spinal cord injury.However,the precise mechanism remains unclear.To investigate the effect of photo biomodulation on mitochondrial fission imbalance after spinal cord injury,in this study,we treated rat models of spinal co rd injury with 60-minute photo biomodulation(810 nm,150 mW) every day for 14 consecutive days.Transmission electron microscopy results confirmed the swollen and fragmented alte rations of mitochondrial morphology in neurons in acute(1 day) and subacute(7 and 14 days) phases.Photo biomodulation alleviated mitochondrial fission imbalance in spinal cord tissue in the subacute phase,reduced neuronal cell death,and improved rat posterior limb motor function in a time-dependent manner.These findings suggest that photobiomodulation targets neuronal mitochondria,alleviates mitochondrial fission imbalance-induced neuronal apoptosis,and thereby promotes the motor function recovery of rats with spinal cord injury.展开更多
As a classic noninvasive physiotherapy,photobiomodulation,also known as low-level laser therapy,is widely used for the treatment of many diseases and has anti-inflammatory and tissue repair effects.Photobiomodulation ...As a classic noninvasive physiotherapy,photobiomodulation,also known as low-level laser therapy,is widely used for the treatment of many diseases and has anti-inflammatory and tissue repair effects.Photobiomodulation has been shown to promote spinal cord injury repair.In our previous study,we found that 810 nm low-level laser therapy reduced the M1 polarization of macrophages and promoted motor function recovery.However,the mechanism underlying this inhibitory effect is not clear.In recent years,transcriptome sequencing analysis has played a critical role in elucidating the progression of diseases.Therefore,in this study,we performed M1 polarization on induced mouse bone marrow macrophages and applied low-level laser therapy.Our sequencing results showed the differential gene expression profile of photobiomodulation regulating macrophage polarization.We analyzed these genes using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.Networks of protein-protein interactions and competing RNA endogenous networks were constructed.We found that photobiomodulation inhibited STAT3 expression through increasing the expression of miR-330-5p,and that miR-330-5p binding to STAT3 inhibited STAT3 expression.Inducible nitric oxide synthase showed trends in changes similar to the changes in STAT3 expression.Finally,we treated a mouse model of spinal cord injury using photobiomodulation and confirmed that photobiomodulation reduced inducible nitric oxide synthase and STAT3 expression and promoted motor function recovery in spinal cord injury mice.These findings suggest that STAT3 may be a potential target of photobiomodulation,and the miR-330-5p/STAT3 pathway is a possible mechanism by which photobiomodulation has its biological effects.展开更多
Background: Brain disorders have become more and more common today, due to both the aging population and the ever-expanding sports community. However, a new therapeutic technology called photobiomodulation (PBM) is gi...Background: Brain disorders have become more and more common today, due to both the aging population and the ever-expanding sports community. However, a new therapeutic technology called photobiomodulation (PBM) is giving hope to thousands of individuals in need. Traumatic brain injury (TBI), dementia, post traumatic stress (PTSD) and attention deficit (ADD) disorders are in many cases quickly and safely improved by PBM. PBM employs red or near-infrared (NIR) light (600 - 1100 nm) to stimulate healing, protect tissue from dying, increase mitochondrial function, improve blood flow, and tissue oxygenation. PBM can also act to reduce edema, increase antioxidants, decrease inflammation, protect against apoptosis, and modulate the microglial activation state. All these effects can occur when light is delivered to the head, and can be beneficial in both acute and chronic brain conditions. Methods: In this case series, we used a high power, FDA-approved superpulsed laser system applied to the head to treat four chronic stroke patients. Patients received as few as three 6 - 9 minute treatments over a one-week period. The follow up time varied, but in one case was two years. Results: Patients showed significant improvement in their speech and verbal skills. Improvements were also noticed in walking ability, limb movement, less numbness, and better vision. Conclusion: The use of PBM in stroke rehabilitation deserves to be tested in controlled clinical trials, because this common condition has no approved pharmaceutical treatment at present.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81070996(to ZW),81572151(to XH)Shaanxi Provincial Key R&D Program,Nos.2020ZDLSF02-05(to ZW),2021ZDLSF02-10(to XH)+1 种基金Everest Project of Military Medicine of Air Force Medical University,No.2018RCFC02(to XH)Boosting Project of the First Affiliated Hospital of Air Force Medical University,No.XJZT19Z22(to ZW)。
文摘Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment.The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair.These proteins are thus candidate targets for spinal cord injury therapy.Our previous studies demonstrated that 810 nm photo biomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals.However,the specific mechanism and potential targets involved remain to be clarified.In this study,to investigate the therapeutic effect of photo biomodulation,we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm~2 for 50 minutes once a day for 7 consecutive days.We found that photobiomodulation greatly restored motor function in mice and down regulated chondroitin sulfate proteoglycan expression in the injured spinal cord.Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury,and versican,a type of proteoglycan,was one of the most markedly changed molecules.Immunofluorescence staining showed that after spinal cord injury,versican was present in astrocytes in spinal cord tissue.The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction,whereas photobiomodulation inhibited the expression of ve rsican.Furthermore,we found that the increased levels of p-Smad3,p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204,(E)-SIS3,and SB 202190.This suggests that Sma d 3/Sox9 and MAP K/Sox9 pathways may be involved in the effects of photobiomodulation.In summary,our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans,and versican is one of the key target molecules of photo biomodulation.MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photo biomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
文摘During orthodontic treatment,we can achieve differential movements by using photobiomodulation(PBM)as an adjuvant before applying force.We can expect a greater bone density that initially resists movement while applying PBM to the other teeth to achieve an accelerating effect.The proposed protocol is to use an 810 nm laser at 0.1W power,applying between 4 and 6J per tooth for 22 s on the vestibular and lingual root surfaces,following the axial axis of the tooth.The energy density depends on the tip selected in the instrument.Normal bone remodeling cannot be avoided by applying high doses of PBM.PBM should be applied before orthodontic force to reduce tooth movement.In addition,PBM can be used during force application to teeth that require acceleration to achieve differential movement in orthodontic treatments.The protocol is the same in both scenarios.
基金supported by the National Research Foundation(NRF)S&F-Scarce Skills Postdoctoral Fellowship,No.120752(to AC)the Global Excellence and Stature,Fourth Industrial Revolution(GES 4.0)Postgraduate Scholarship(to MJR)the South African Research Chairs Initiative of the Department of Science and Technology and National Research Foundation of South Africa(SARChI/NRF-DST),No.146290(to DDS and HA).
文摘Photobiomodulation,originally used red and near-infrared lasers,can alter cellular metabolism.It has been demonstrated that the visible spectrum at 451-540 nm does not necessarily increase cell proliferation,near-infrared light promotes adipose stem cell proliferation and affects adipose stem cell migration,which is necessary for the cells homing to the site of injury.In this in vitro study,we explored the potential of adipose-derived stem cells to differentiate into neurons for future translational regenerative treatments in neurodegenerative disorders and brain injuries.We investigated the effects of various biological and chemical inducers on trans-differentiation and evaluated the impact of photobiomodulation using 825 nm near-infrared and 525 nm green laser light at 5 J/cm2.As adipose-derived stem cells can be used in autologous grafting and photobiomodulation has been shown to have biostimulatory effects.Our findings reveal that adipose-derived stem cells can indeed trans-differentiate into neuronal cells when exposed to inducers,with pre-induced cells exhibiting higher rates of proliferation and trans-differentiation compared with the control group.Interestingly,green laser light stimulation led to notable morphological changes indicative of enhanced trans-differentiation,while near-infrared photobiomodulation notably increased the expression of neuronal markers.Through biochemical analysis and enzyme-linked immunosorbent assays,we observed marked improvements in viability,proliferation,membrane permeability,and mitochondrial membrane potential,as well as increased protein levels of neuron-specific enolase and ciliary neurotrophic factor.Overall,our results demonstrate the efficacy of photobiomodulation in enhancing the trans-differentiation ability of adipose-derived stem cells,offering promising prospects for their use in regenerative medicine for neurodegenerative disorders and brain injuries.
基金supported by the National Natural Science Foundation of China,Nos.81070996 (to ZW) and 815 72151 (to XYH)Shaanxi Provincial Key R&D Program,Nos.2020ZDLSF02-05 (to ZW),2021ZDLSF02-10 (to XYH)。
文摘Increasing evidence indicates that mitochonarial lission imbalance plays an important role in derayed neuronal cell death. Our previous study round that photo biomodulation improved the motor function of rats with spinal cord injury.However,the precise mechanism remains unclear.To investigate the effect of photo biomodulation on mitochondrial fission imbalance after spinal cord injury,in this study,we treated rat models of spinal co rd injury with 60-minute photo biomodulation(810 nm,150 mW) every day for 14 consecutive days.Transmission electron microscopy results confirmed the swollen and fragmented alte rations of mitochondrial morphology in neurons in acute(1 day) and subacute(7 and 14 days) phases.Photo biomodulation alleviated mitochondrial fission imbalance in spinal cord tissue in the subacute phase,reduced neuronal cell death,and improved rat posterior limb motor function in a time-dependent manner.These findings suggest that photobiomodulation targets neuronal mitochondria,alleviates mitochondrial fission imbalance-induced neuronal apoptosis,and thereby promotes the motor function recovery of rats with spinal cord injury.
基金supported by the National Natural Science Foundation of China,Nos.81070996(to ZW),81572151(to XYH)Shaanxi Provincial Key R&D Program,China,Nos.2020ZDLSF02-05(to ZW),2021ZDLSF02-10(to XYH)。
文摘As a classic noninvasive physiotherapy,photobiomodulation,also known as low-level laser therapy,is widely used for the treatment of many diseases and has anti-inflammatory and tissue repair effects.Photobiomodulation has been shown to promote spinal cord injury repair.In our previous study,we found that 810 nm low-level laser therapy reduced the M1 polarization of macrophages and promoted motor function recovery.However,the mechanism underlying this inhibitory effect is not clear.In recent years,transcriptome sequencing analysis has played a critical role in elucidating the progression of diseases.Therefore,in this study,we performed M1 polarization on induced mouse bone marrow macrophages and applied low-level laser therapy.Our sequencing results showed the differential gene expression profile of photobiomodulation regulating macrophage polarization.We analyzed these genes using gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.Networks of protein-protein interactions and competing RNA endogenous networks were constructed.We found that photobiomodulation inhibited STAT3 expression through increasing the expression of miR-330-5p,and that miR-330-5p binding to STAT3 inhibited STAT3 expression.Inducible nitric oxide synthase showed trends in changes similar to the changes in STAT3 expression.Finally,we treated a mouse model of spinal cord injury using photobiomodulation and confirmed that photobiomodulation reduced inducible nitric oxide synthase and STAT3 expression and promoted motor function recovery in spinal cord injury mice.These findings suggest that STAT3 may be a potential target of photobiomodulation,and the miR-330-5p/STAT3 pathway is a possible mechanism by which photobiomodulation has its biological effects.
文摘Background: Brain disorders have become more and more common today, due to both the aging population and the ever-expanding sports community. However, a new therapeutic technology called photobiomodulation (PBM) is giving hope to thousands of individuals in need. Traumatic brain injury (TBI), dementia, post traumatic stress (PTSD) and attention deficit (ADD) disorders are in many cases quickly and safely improved by PBM. PBM employs red or near-infrared (NIR) light (600 - 1100 nm) to stimulate healing, protect tissue from dying, increase mitochondrial function, improve blood flow, and tissue oxygenation. PBM can also act to reduce edema, increase antioxidants, decrease inflammation, protect against apoptosis, and modulate the microglial activation state. All these effects can occur when light is delivered to the head, and can be beneficial in both acute and chronic brain conditions. Methods: In this case series, we used a high power, FDA-approved superpulsed laser system applied to the head to treat four chronic stroke patients. Patients received as few as three 6 - 9 minute treatments over a one-week period. The follow up time varied, but in one case was two years. Results: Patients showed significant improvement in their speech and verbal skills. Improvements were also noticed in walking ability, limb movement, less numbness, and better vision. Conclusion: The use of PBM in stroke rehabilitation deserves to be tested in controlled clinical trials, because this common condition has no approved pharmaceutical treatment at present.