A synergistic photocatalysis combined pulsed diaphragm discharge(PDD)system with TiO_2 nanofilm deposited on the surface of quartz diaphragm is developed for the first time for phenol degradation in an aqueous solut...A synergistic photocatalysis combined pulsed diaphragm discharge(PDD)system with TiO_2 nanofilm deposited on the surface of quartz diaphragm is developed for the first time for phenol degradation in an aqueous solution.It is observed that the decomposition efficiency of phenol in the TiO_2 combined PDD system is higher than that of the single PDD system under the same conditions,indicating a successful collaboration between the photocatalysis and the plasma decomposition in the present system.Analysis of the solution's pH value confirms this collaboration and further reveals that the photocatalytic enhancement effect of phenol degradation is strong at a relatively low supplied voltage.The present TiO_2 combined PDD system exhibits improved efficiencies of pollutant degradation and energy utilization,suggesting a good candidate for wastewater treatment.展开更多
Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found ...Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.展开更多
The geopolymer synthesized by alkali-activated fly ash was firstly used as a novel photocatalyst for degradation of methylene blue (MB) dye from wastewater. The geopolymer is composed of nanoparticulates with an ave...The geopolymer synthesized by alkali-activated fly ash was firstly used as a novel photocatalyst for degradation of methylene blue (MB) dye from wastewater. The geopolymer is composed of nanoparticulates with an average particle size of about 50 nm, More than 90% of pore volume in the fly ash-based geopolymet predominately centralized on the pore size in the range of 17-700 nm. The degradation efficiency of MB dye by fly ash-based geopolymer catalyst was up to 92.79% under UV irradiation due to the synergistic effect of adsorption and semiconductor photocatalysis. The pseudo-first-order and pseudo-second-order rate equations as well as intra-particle diffusion rate equation were employed to correlate analysis for the adsorption kinetics of MB dye, The experimental data agreed well with pseudo-second-order rate equation in both cases of with UV and without UV irradiations. The intra-particle diffusion process is not the rate determining step. The photocatalytic degradation of MB dye in solution obeys third-order reaction kinetics.展开更多
The photocatalytic oxidation of gaseous chlorobenzene(CB) by the 365 nm-induced photocatalyst La/N–Ti O2, synthesized via a sol–gel and hydrothermal method, was evaluated. Response surface methodology(RSM) was u...The photocatalytic oxidation of gaseous chlorobenzene(CB) by the 365 nm-induced photocatalyst La/N–Ti O2, synthesized via a sol–gel and hydrothermal method, was evaluated. Response surface methodology(RSM) was used to model and optimize the conditions for synthesis of the photocatalyst. The optimal photocatalyst was 1.2La/0.5N–Ti O2(0.5) and the effects of La/N on crystalline structure, particle morphology, surface element content, and other structural characteristics were investigated by XRD(X-ray diffraction), TEM(Transmission Electron Microscopy), FTIR(Fourier transform infrared spectroscopy), UV–vis(Ultraviolet–visible spectroscopy), and BET(Brunauer Emmett Teller). Greater surface area and smaller particle size were produced with the co-doped Ti O2 nanotubes than with reference Ti O2. The removal of CB was effective when performed using the synthesized photocatalyst,though it was less efficient at higher initial CB concentrations. Various modified Langmuir-Hinshelwood kinetic models involving the adsorption of chlorobenzene and water on different active sites were evaluated. Fitting results suggested that competitive adsorption caused by water molecules could not be neglected, especially for environments with high relative humidity. The reaction intermediates found after GC–MS(Gas chromatography–mass spectrometry) analysis indicated that most were soluble, low-toxicity, or both. The results demonstrated that the prepared photocatalyst had high activity for VOC(volatile organic compounds) conversion and may be used as a pretreatment prior to biopurification.展开更多
基金supported by National Natural Science Foundation of China(Nos.11205202,21203204 and 11175214)National Natural Science Foundation of Anhui Province(No.1308085QA09)
文摘A synergistic photocatalysis combined pulsed diaphragm discharge(PDD)system with TiO_2 nanofilm deposited on the surface of quartz diaphragm is developed for the first time for phenol degradation in an aqueous solution.It is observed that the decomposition efficiency of phenol in the TiO_2 combined PDD system is higher than that of the single PDD system under the same conditions,indicating a successful collaboration between the photocatalysis and the plasma decomposition in the present system.Analysis of the solution's pH value confirms this collaboration and further reveals that the photocatalytic enhancement effect of phenol degradation is strong at a relatively low supplied voltage.The present TiO_2 combined PDD system exhibits improved efficiencies of pollutant degradation and energy utilization,suggesting a good candidate for wastewater treatment.
基金supported by National Basic Research Program (973) of China (No. 2013CB933200)the National Natural Science Foundation of China (Nos. 21671197, 51472260)the Research Grant (No. 16ZR1440800) from Shanghai Science and Technology Commission
文摘Surface junctions between Bi OBr and BiVO4 were synthesized. The BiOBr/BiVO4 with 1 wt.%of Bi OBr exhibited the highest photocatalytic activity in the degradation of Rh B under visible-light irradiation. It was found that the highly efficient adsorption of Rh B molecules via the electrostatic attraction between Br-and cationic /N(Et)2 group played a key role for the high photocatalytic activities of BiOBr/BiVO4. This efficient adsorption promoted the N-deethylation of Rh B and thus accelerated the photocatalytic degradation of Rh B.Moreover, the metal-to-metal charge transfer(MMCT) mechanism was proposed, which revealed the concrete path paved with Bi–O–Bi chains for the carrier migration in BiOBr/BiVO4. The interaction between photoexcited Rh B* and the Bi^(3+) in BiVO4 provided the driving force for the migration of photo-generated carriers along the Bi–O–Bi chains. This work has not only demonstrated the important role of efficient adsorption in the photocatalytic degradation of organic contaminants, but also developed a facile strategy to improve the efficiency of photocatalysts.
基金financially supported by Industrial Key Project of Shaanxi Province(No.2010K01-080)Open Fund of State Key Laboratory of Architecture Science and Technology in West China(XAUAT)+1 种基金Xi'an University of Architecture and Technology(No.10KF05)Scientific Research Program Funded by Shaanxi Provincial Education Department(No.12JK0579)
文摘The geopolymer synthesized by alkali-activated fly ash was firstly used as a novel photocatalyst for degradation of methylene blue (MB) dye from wastewater. The geopolymer is composed of nanoparticulates with an average particle size of about 50 nm, More than 90% of pore volume in the fly ash-based geopolymet predominately centralized on the pore size in the range of 17-700 nm. The degradation efficiency of MB dye by fly ash-based geopolymer catalyst was up to 92.79% under UV irradiation due to the synergistic effect of adsorption and semiconductor photocatalysis. The pseudo-first-order and pseudo-second-order rate equations as well as intra-particle diffusion rate equation were employed to correlate analysis for the adsorption kinetics of MB dye, The experimental data agreed well with pseudo-second-order rate equation in both cases of with UV and without UV irradiations. The intra-particle diffusion process is not the rate determining step. The photocatalytic degradation of MB dye in solution obeys third-order reaction kinetics.
基金supported by the National Natural Science Foundation of China(No.21276239)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT13096)
文摘The photocatalytic oxidation of gaseous chlorobenzene(CB) by the 365 nm-induced photocatalyst La/N–Ti O2, synthesized via a sol–gel and hydrothermal method, was evaluated. Response surface methodology(RSM) was used to model and optimize the conditions for synthesis of the photocatalyst. The optimal photocatalyst was 1.2La/0.5N–Ti O2(0.5) and the effects of La/N on crystalline structure, particle morphology, surface element content, and other structural characteristics were investigated by XRD(X-ray diffraction), TEM(Transmission Electron Microscopy), FTIR(Fourier transform infrared spectroscopy), UV–vis(Ultraviolet–visible spectroscopy), and BET(Brunauer Emmett Teller). Greater surface area and smaller particle size were produced with the co-doped Ti O2 nanotubes than with reference Ti O2. The removal of CB was effective when performed using the synthesized photocatalyst,though it was less efficient at higher initial CB concentrations. Various modified Langmuir-Hinshelwood kinetic models involving the adsorption of chlorobenzene and water on different active sites were evaluated. Fitting results suggested that competitive adsorption caused by water molecules could not be neglected, especially for environments with high relative humidity. The reaction intermediates found after GC–MS(Gas chromatography–mass spectrometry) analysis indicated that most were soluble, low-toxicity, or both. The results demonstrated that the prepared photocatalyst had high activity for VOC(volatile organic compounds) conversion and may be used as a pretreatment prior to biopurification.