A novel photocatalytic cement based material was prepared. The distribution of TiO2 on the surface of cement was characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), which showed the rela...A novel photocatalytic cement based material was prepared. The distribution of TiO2 on the surface of cement was characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), which showed the relationship of photocatalysis and presence of TiO2. TiO2 also had an impact on cement hydration, which was studied by thermal analysis. With 300 W UV illuminations, formaldehyde and benzene were degraded efficiently by the prepared photocatalytic cement based materials. 15wt% TiO2/cement showed the highest degradation efficiency and capability. The results show that formaldehyde and benzene can be degraded within 4 and 9 hours, respectively. Besides, inorganic ions can induce TiO2 agglomeration. As a result, the presence of inorganic ions in cement is unfavorable for degradation. The photocatalytic cement based materials were fabricated and the degradation efficiency of formaldehyde was measured on building roof under sunlight illumination. Formaldehyde in glass chamber can be degraded thoroughly within 10 days.展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51478370 and 51461135005)
文摘A novel photocatalytic cement based material was prepared. The distribution of TiO2 on the surface of cement was characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD), which showed the relationship of photocatalysis and presence of TiO2. TiO2 also had an impact on cement hydration, which was studied by thermal analysis. With 300 W UV illuminations, formaldehyde and benzene were degraded efficiently by the prepared photocatalytic cement based materials. 15wt% TiO2/cement showed the highest degradation efficiency and capability. The results show that formaldehyde and benzene can be degraded within 4 and 9 hours, respectively. Besides, inorganic ions can induce TiO2 agglomeration. As a result, the presence of inorganic ions in cement is unfavorable for degradation. The photocatalytic cement based materials were fabricated and the degradation efficiency of formaldehyde was measured on building roof under sunlight illumination. Formaldehyde in glass chamber can be degraded thoroughly within 10 days.