期刊文献+
共找到275篇文章
< 1 2 14 >
每页显示 20 50 100
Electrochemical synthesis of trimetallic nickel-iron-copper nanoparticles via potential-cycling for high current density anion exchange membrane water-splitting applications
1
作者 Ziqi Zhang Sheng Wan +4 位作者 Hanbo Wang Jinghan He Ruige Zhang Yuhang Qi Haiyan Lu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期535-542,I0012,共9页
Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to... Hydrogen is known for its elevated energy density and environmental compatibility and is a promising alternative to fossil fuels.Alkaline water electrolysis utilizing renewable energy sources has emerged as a means to obtain high-purity hydrogen.Nevertheless,electrocatalysts used in the process are fabricated using conventional wet chemical synthesis methods,such as sol-gel,hydrothermal,or surfactantassisted approaches,which often necessitate intricate pretreatment procedures and are vulnerable to post-treatment contamination.Therefore,this study introduces a streamlined and environmentally conscious one-step potential-cycling approach to generate a highly efficient trimetallic nickel-iron-copper electrocatalyst in situ on nickel foam.The synthesized material exhibited remarkable performance,requiring a mere 476 mV to drive electrochemical water splitting at 100 mA cm^(-2)current density in alkaline solution.Furthermore,this material was integrated into an anion exchange membrane watersplitting device and achieved an exceptionally high current density of 1 A cm^(-2)at a low cell voltage of2.13 V,outperforming the noble-metal benchmark(2.51 V).Additionally,ex situ characterizations were employed to detect transformations in the active sites during the catalytic process,revealing the structural transformations and providing inspiration for further design of electrocatalysts. 展开更多
关键词 Electrocatalytic water splitting hydrogen evolution reaction Oxygen evolution reaction Electrochemical synthesis Anion exchange membrane
下载PDF
Photocatalytic Hydrogen Evolution from the Splitting of Water over Cd_(1-x)Zn_xS/K_2La_2Ti_3O_(10) Composites under Visible Light Irradiation
2
作者 刘利 GUO Dongmei +2 位作者 崔文权 HU Jinshan 梁英华 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第5期928-934,共7页
A series of Cd1-xZnxS/K2La2Ti3O10 composites were synthesized via a simple co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray energy di... A series of Cd1-xZnxS/K2La2Ti3O10 composites were synthesized via a simple co-precipitation method. The prepared samples were characterized by X-ray diffraction(XRD), scanning electron microscopy(SEM), X-ray energy dispersive spectroscopy(EDX), ultraviolet-visible diffuse reflection(UV-Vis), X-ray photoelectron spectroscopy(XPS) and photoluminescence(PL) measurements. The composite structures consisted of Cd1-xZnxS nanoparticles evenly distributed on the surface of K2La2Ti3O10. The absorption edge of K2La2Ti3O10 shifted to the visible light region upon introduction of the Cd1-xZnxS nanoparticles. The photocatalytic activities of the catalysts were evaluated by hydrogen production under visible light irradiation. The prepared Cd0.8Zn0.2S(30wt%)/K2La2Ti3O10 exhibited higher photocatalytic activity, evolving 6.92 mmol/g H2 under visible light irradiation for 3 h. The promoted photocatalytic activity of the composites was attributed to the synergistic effect between Cd1-xZnxS and K2La2Ti3O10, which resulted in enhanced separation of photogenerated electrons and holes. 展开更多
关键词 Cd1-xZnxS/K2La2Ti3O10 composites PHOTOCATALYSIS hydrogen evolution water splitting
下载PDF
Ionic liquid derived electrocatalysts for electrochemical water splitting
3
作者 Tianhao Li Weihua Hu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期604-622,共19页
Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and... Hydrogen production from electrochemical water splitting is a promising strategy to generate green energy,which requires the development of efficient and stable electrocatalysts for the hydrogen evolution reaction and the oxygen evolution reaction(HER and OER).Ionic liquids(ILs)or poly(ionic liquids)(PILs),containing heteroatoms,metal-based anions,and various structures,have been frequently involved as precursors to prepare electrocatalysts for water splitting.Moreover,ILs/PILs possess high conductivity,wide electrochemical windows,and high thermal and chemical stability,which can be directly applied in the electrocatalysis process with high durability.In this review,we focus on the studies of ILs/PILs-derived electrocatalysts for HER and OER,where ILs/PILs are applied as heteroatom dopants and metal precursors to prepare catalysts or are directly utilized as the electrocatalysts.Due to those attractive properties,IL/PIL-derived electrocatalysts exhibit excellent performance for electrochemical water splitting.All these accomplishments and developments are systematically summarized and thoughtfully discussed.Then,the overall perspectives for the current challenges and future developments of ILs/PILs-derived electrocatalysts are provided. 展开更多
关键词 Ionic liquid Electrochemical water splitting hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting
4
作者 Fang Luo Shuyuan Pan +3 位作者 Yuhua Xie Chen Li Yingjie Yu Zehui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期1-6,I0002,共7页
Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formatio... Urea oxidation reaction(UOR) has been selected as substitution for oxygen evolution reaction ascribing to its low thermodynamic voltage as well as utilization of nickel as electrocatalyst.Herein,we report the formation of nickel single atoms(Ni-SAs) as exceptional bifunctional electrocatalyst toward UOR and hydrogen evolution reaction(HER) in urea-assisted water splitting.In UOR catalysis,Ni-SAs perform a superior catalytic performance than Ni-NP/NC and Pt/C ascribing to the formation of HOO-Ni-N_(4) structure evidenced by in-situ Raman spectroscopy,corresponding to a boosted mass activity by 175-fold at 1.4 V vs.RHE than Ni-NP/NC.Furthermore,Ni-SAs requires only 450 mV overpotential to obtain HER current density of 500 mA cm^(-2).136 mA cm^(-2) is achieved in urea-assisted water splitting at1.7 V for Ni-SAs,boosted by 5.7 times than Pt/C-IrO_(2) driven water splitting. 展开更多
关键词 Urea oxidation reaction hydrogen evolution reaction Nickel single atoms water splitting
下载PDF
Accurate design of spatially separated double active site in Bi_(4)NbO_(8)Cl single crystal to promote Z-Scheme photocatalytic overall water splitting
5
作者 Kailong Gao Hongxia Guo +4 位作者 Yanan Hu Hongbin He Mowen Li Xiaoming Gao Feng Fu 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期568-582,I0014,共16页
The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction wa... The efficiency of photocatalytic overall water splitting was mainly limited by the slow reaction kinetics of water oxidation.How to design effective surface active site to overcome the slow water oxidation reaction was a major challenge.Here,we propose a strategy to accelerate surface water oxidation through the fabrication spatially separated double active sites.FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalyst with spatially separated double active site was prepared by hydrogen reduction photoanode deposition method.Due to the high matching of the spatial loading positions of FeCoPi and OVs with the photogenerated charge distribution of Bi_(4)NbO_(8)Cl and corresponding reaction mechanisms of substrate,the FeCoPi and OVs on the(001)and(010)crystal planes of Bi_(4)NbO_(8)Cl photocatalyst provided surface active site for water oxidation reaction and electron shuttle reaction(Fe^(3+)/Fe^(2+)),respectively.Under visible light irradiation,the evolution O_(2)rate of FeCoPi/Bi_(4)NbO_(8)Cl OVs was 16.8μmol h^(-1),as 32.9 times as Bi_(4)NbO_(8)Cl.Furthermore,a hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3)was prepared by sequential photodeposition method.Due to the introduction of Ru,the Schottky barrier between PbTiO_(3)and Pt was effectively reduced,which promoted the transfer of photogenerated electrons to PtRu@Cr_(2)O_(3)thermodynamically,the evolution H_(2)rate on PtRu@Cr_(2)O_(3)/PbTiO_(3)increased to 664.8 times.On based of the synchronous enhancement of the water oxidation performance on FeCoPi/Bi_(4)NbO_(8)Cl-OVs and water reduction performance on PtRu@Cr_(2)O_(3)/PbTiO_(3),a novel Z-Scheme photocatalytic overall water splitting system(FeCoPi/Bi_(4)NbO_(8)Cl-OVs)mediated by Fe^(3+)/Fe^(2+)had successfully constructed.Under visible light irradiation,the evolution rates of H_(2)and O_(2)were 2.5 and 1.3μmol h^(-1),respectively.This work can provide some reference for the design of active site and the controllable synthesis of OVs spatial position.On the other hand,the hydrogen evolution co catalyst(PtRu@Cr_(2)O_(3))and the co catalyst FeCoPi for oxygen evolution contributed to the construction of an overall water splitting system. 展开更多
关键词 Spatially separated double active sites FeCoPi/Bi_(4)NbO_(8)Cl-OVs photocatalytic water oxidation photocatalytic hydrogen evolution hydrogen evolution co-catalyst PtRu@Cr_(2)O_(3) Z-Scheme photocatalytic overall water splitting system
下载PDF
Unveiling the Optimal Interfacial Synergy of Plasma-Modulated Trimetallic Mn-Ni-Co Phosphides:Tailoring Deposition Ratio for Complementary Water Splitting 被引量:1
6
作者 Kholoud E.Salem Amina A.Saleh +2 位作者 Ghada E.Khedr Basamat S.Shaheen Nageh K.Allam 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期129-141,共13页
Designing highly active,durable,and nonprecious metal-based bifunctional electrocatalysts for overall water electrolysis is of urgent scientific importance to realize the sustainable hydrogen production,which remains ... Designing highly active,durable,and nonprecious metal-based bifunctional electrocatalysts for overall water electrolysis is of urgent scientific importance to realize the sustainable hydrogen production,which remains a grand challenge.Herein,an innovative approach is demonstrated to synthesize flower-like 3D homogenous trimetallic Mn,Ni,Co phosphide catalysts directly on nickel foam via electrodeposition followed by plasma phosphidation.The electrochemical activity of the catalysts with varying Mn:Ni:Co ratios is assessed to identify the optimal composition,demonstrating that the equimolar trimetallic phosphide yields an outstanding HER catalytic performance with a current density of 10 mA cm^(-2) at an ultra-low overpotential of~14 mV,outperforming the best reported electrocatalysts.This is asserted by the DFT calculations,revealing strong interaction of the metals and the P atom,resulting in enhanced water activation and optimized G_(H)^(*)values for the HER process.Moreover,this optimal composition appreciably catalyzes the OER by exposing more intrinsic active species in-situ formed on the catalyst surface during the OER.Therefore,the Mn_(1)-Ni_(1)-Co_(1)-P-(O)/NF catalyst exhibits a decreased overpotential of~289 mV at 10 mA cm^(-2).More importantly,the electrocatalyst sustains perfect durability up to 48 h at a current density of 10 mA cm^(-2) and continued 5000 cycling stability for both HER and OER.Meanwhile,the assembled MNC-P/NF||MNC-P/NF full water electrolyzer system attains an extremely low cell voltage of 1.48 V at 10 mA cm^(-2).Significantly,the robust stability of the overall system results in a remarkable current retention of~96%after a continuous 50-h run.Therefore,this study provides a facile design and a scalable construction of superb bifunctional ternary MNC-phosphide electrocatalysts for efficient electrochemical energy production systems. 展开更多
关键词 DFT overall water splitting oxygen evolution reaction(OER)/hydrogen evolution reaction(HER) plasma ternary metallic phosphides(MnNiCo)
下载PDF
Machine learning aided design of perovskite oxide materials for photocatalytic water splitting 被引量:6
7
作者 Qiuling Tao Tian Lu +3 位作者 Ye Sheng Long Li Wencong Lu Minjie Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期351-359,共9页
Suffering from the inefficient traditional trial-and-error methods and the huge searching space filled by millions of candidates, discovering new perovskite visible photocatalysts with higher hydrogen production rate(... Suffering from the inefficient traditional trial-and-error methods and the huge searching space filled by millions of candidates, discovering new perovskite visible photocatalysts with higher hydrogen production rate(RH_(2)) still remains a challenge in the field of photocatalytic water splitting(PWS). Herein, we established structural-property models targeted to RH_(2) and the proper bandgap(Eg) via machine learning(ML) technology to accelerate the discovery of efficient perovskite photocatalysts for PWS. The Pearson correlation coefficients(R) of leave-one-out cross validation(LOOCV) were adopted to compare the performances of different algorithms including gradient boosting regression(GBR), support vector regression(SVR), backpropagation artificial neural network(BPANN), and random forest(RF). It was found that the BPANN model showed the highest R values from LOOCV and testing data of 0.9897 and 0.9740 for RH_(2),while the GBR model had the best values of 0.9290 and 0.9207 for Eg. Furtherly, 14 potential PWS perovskite candidates were screened out from 30,000 ABO3-type perovskite structures under the criteria of structural stability, Eg, conduction band energy, valence band energy and RH_(2). The average RH_(2) of these14 perovskites is 6.4% higher than the highest value in the training data set. Moreover, the online web servers were developed to share our prediction models, which could be accessible in http://materialsdata-mining.com/ocpmdm/material_api/ahfga3d9puqlknig(E_g prediction) and http://materials-datamining.com/ocpmdm/material_api/i0 ucuyn3 wsd14940(RH_(2) prediction). 展开更多
关键词 PEROVSKITE Machine learning Online web service photocatalytic water splitting Bandgap hydrogen production rate
下载PDF
NiCoP nanoleaves array for electrocatalytic alkaline H2 evolution and overall water splitting 被引量:6
8
作者 Lei Chen Yaohao Song +4 位作者 Yi Liu Liang Xu Jiaqian Qin Yongpeng Lei Yougen Tang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期395-401,共7页
The development of non-precious, high-efficient and durable electrocatalysts for H2 evolution in alkaline media is highly desirable. Herein we report NiCoP nanoleaves array vertically grown on Ni foam for H2 evolution... The development of non-precious, high-efficient and durable electrocatalysts for H2 evolution in alkaline media is highly desirable. Herein we report NiCoP nanoleaves array vertically grown on Ni foam for H2 evolution and overall water splitting via simple hydrothermal treatment and phosphorization. The selfsupported NiCoP nanoleaves architecture contributes to more exposed active sites, the smaller contact resistance between catalyst and substrate, faster ion diffusion and electron transfer. As a result, the optimized electrode requires only overpotentials of 98 and 173 mV to achieve current densities of 10 and100 m A cm-2 in 1.0 M KOH,respectively. Besides, used as both anode and cathode simultaneously, the electrode delivers current densities of 100 and 200 m A cm-2 at cell voltages of only 1.8 and 1.87 V, respectively. Moreover, the relatively high efficiency of about 11.4% for solar-driven water splitting further illustrates the application of our catalyst to sustainable development based on green technologies. 展开更多
关键词 ELECTROCATALYSIS hydrogen evolution reaction Alkaline media water splitting Solar-driven electrolysis
下载PDF
Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces 被引量:3
9
作者 Tatsuya Shinagawa Zhen Cao +1 位作者 Luigi Cavallo Kazuhiro Takanabe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期259-269,共11页
Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials... Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties(1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces(3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface(5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing 'photocatalysis by design' concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory.Photocatalytic water splitting(especially hydrogen evolution on metal surfaces) was selected as a topic,and the photophysical and electrochemical processes that occur at semiconductor–metal, semiconductor–electrolyte and metal–electrolyte interfaces are discussed. 展开更多
关键词 PHOTOCATALYSIS Interface water splitting Modeling ELECTROCATALYSIS hydrogen evolution
下载PDF
Layered double hydroxide(LDH)-based materials:A mini-review on strategies to improve the performance for photocatalytic water splitting 被引量:5
10
作者 Hanane Boumeriame Eliana S.Da Silva +3 位作者 Alexey S.Cherevan Tarik Chafik Joaquim L.Faria Dominik Eder 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期406-431,I0011,共27页
The high energy demand we currently face in society and the subsequent large consumption of fossil fuels cause its depletion and increase the pollution levels.The quest for the production of clean energy from renewabl... The high energy demand we currently face in society and the subsequent large consumption of fossil fuels cause its depletion and increase the pollution levels.The quest for the production of clean energy from renewable and sustainable sources remains open.The conversion of solar energy into hydrogen via the water-splitting process,assisted by pho tores pons ive semiconductor catalysts,is one of the most promising technologies.Significant progress has been made on water splitting in the past few years and a variety of photocatalysts active not only under ultra-violet(UV) light but especially with the visible part of the electromagnetic spectrum have been developed.Layered double hydroxides(LDH)-based materials have emerged as a promising class of nanomaterials for solar energy applications owing to their unique layered structure,compositional flexibility,tunable bandgaps,ease of synthesis and low manufacturing costs.This review covers the most recent research dedicated to LDH materials for photocatalytic water-splitting applications and encompasses a range of synthetic strategies and post-modifications used to enhance their performance.Moreover,we provide a thorough discussion of the experimental conditions crucial to obtaining improved photoactivity and highlight the impact of some specific parameters,namely,catalysts loading,cocatalysts,sacrificial agents,and irradiation sources.This review provides the necessary tools to select the election technique for adequately enhancing the photoactivity of LDH and modified LDH-based materials and concludes with a critical summary that outlines further research directions. 展开更多
关键词 Layered double hydroxides water splitting PHOTOCATALYSIS hydrogen generation Oxygen evolution NANOMATERIALS
下载PDF
Electrodeposition:Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water 被引量:4
11
作者 Ruopeng Li Yun Li +6 位作者 Peixia Yang Dan Wang Hao Xu Bo Wang Fan Meng Jinqiu Zhang Maozhong An 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期547-566,I0013,共21页
Developing lower-cost and higher-effective catalyst to support hydrogen(H_(2))production by electrochemical water-splitting has been recognized as a preferred strategy to drive the clean energy utilization.As a credib... Developing lower-cost and higher-effective catalyst to support hydrogen(H_(2))production by electrochemical water-splitting has been recognized as a preferred strategy to drive the clean energy utilization.As a credible technology for the synthesis of functional materials,electrodeposition has attracted widespread attention,especially suitable for non-noble transition metal-based catalysts(TMCs).Recently,lots of researchers have been devoted to this hot research direction with plentiful achievements,however,a comprehensive review towards this area is still missing.Hence,we summarize the past research progress,presents the technical characteristics of electrodeposition from the viewpoint of fundamental theory and influence factors for the electrochemical deposition behavior,and introduce its application in various of TMCs with versatile nanostructures and compositions.Except a deeper and more comprehensive cognition of electrodeposition,we further discuss the catalyst’s optimized hydrogen evolution reaction(HER),oxygen evolution reaction(OER)performance as well as overall water splitting that combined with the synthetic process.Finally,we conclude the technical advantages towards electrodeposition,propose challenge and future research directions in this promising field.This timely review aims to promote a deeper understanding of effective catalysts obtained via electrodeposition strategy,and provide new guidance for the design and synthesis of future catalysts for hydrogen production. 展开更多
关键词 ELECTRODEPOSITION Transition metal-based catalysts hydrogen evolution reaction Oxygen evolution reaction water splitting
下载PDF
Heterostructured MOFs photocatalysts for water splitting to produce hydrogen 被引量:3
12
作者 Yu Xiao Xiangyang Guo +1 位作者 Nengcong Yang Fuxiang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期508-522,共15页
Metal-organic frameworks(MOFs) with high designability and structure diversity have been widely developed as promising photocatalytic materials,but most of them suffer from poor charge transportation and separation ef... Metal-organic frameworks(MOFs) with high designability and structure diversity have been widely developed as promising photocatalytic materials,but most of them suffer from poor charge transportation and separation efficiency.To address it,the construction of MOFs-based heterostructures has been thus highly inspired.In this minireview,we will first introduce the basic principles of photocata lytic water splitting and heterostructure systems,and then discuss state-of-the-art MOFs-based heterostructures for photocata lytic water splitting to produce hydrogen.Meanwhile,special attention will be paid to the key factors affecting the interfacial charge transfer of heterostructures,such as interface connection mode,morphology control,and modification.Eventually,the challenges and prospects faced by the construction of high-efficiency MOFs-based heterostructure water slitting photocatalysts are proposed. 展开更多
关键词 MOF HETEROSTRUCTURE water splitting photocatalytic hydrogen production
下载PDF
Interfacial engineering of holey platinum nanotubes for formic acid electrooxidation boosted water splitting
13
作者 Zi-Xin Ge Yu Ding +6 位作者 Tian-Jiao Wang Feng Shi Pu-Jun Jin Pei Chen Bin He Shi-Bin Yin Yu Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期209-216,I0006,共9页
Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to syn... Both structure and interface engineering are highly effective strategies for enhancing the catalytic activity and selectivity of precious metal nanostructures.In this work,we develop a facile pyrolysis strategy to synthesize the high-quality holey platinum nanotubes(Pt-H-NTs)using nanorods-like Pt^(Ⅱ)-phenanthroline(PT)coordination compound as self-template and self-reduction precursor.Then,an up-bottom strategy is used to further synthesize polyallylamine(PA)modified Pt-H-NTs(Pt-HNTs@PA).PA modification sharply promotes the catalytic activity of Pt-H-NTs for the formic acid electrooxidation reaction(FAEOR)by the direct reaction pathway.Meanwhile,PA modification also elevates the catalytic activity of Pt-H-NTs for the hydrogen evolution reaction(HER)by the proton enrichment at electrolyte/electrode interface.Benefiting from the high catalytic activity of Pt-H-NTs@PA for both FAEOR and HER,a two-electrode FAEOR boosted water electrolysis system is fabricated by using Pt-H-NTs@PA as bifunctio nal electrocatalysts.Such FAEOR boosted water electrolysis system only requires the operational voltage of 0.47 V to achieve the high-purity hydrogen production,showing an energy-saving hydrogen production strategy compared to traditional water electrolysis system. 展开更多
关键词 Holey platinum nanotubes Chemical functionalization Formic acid oxidation reaction hydrogen evolution reaction water splitting
下载PDF
Ultralow-voltage hydrogen production and simultaneous Rhodamine B beneficiation in neutral wastewater
14
作者 Xiang Peng Song Xie +8 位作者 Shijian Xiong Rong Li Peng Wang Xuming Zhang Zhitian Liu Liangsheng Hu Biao Gao Peter Kelly Paul K.Chu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第6期574-582,I0013,共10页
Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can impr... Electrocatalytic water splitting for hydrogen production is hampered by the sluggish oxygen evolution reaction(OER)and large power consumption and replacing the OER with thermodynamically favourable reactions can improve the energy conversion efficiency.Since iron corrodes easily and even self-corrodes to form magnetic iron oxide species and generate corrosion currents,a novel strategy to integrate the hydrogen evolution reaction(HER)with waste Fe upgrading reaction(FUR)is proposed and demonstrated for energy-efficient hydrogen production in neutral media.The heterostructured MoSe_(2)/MoO_(2) grown on carbon cloth(MSM/CC)shows superior HER performance to that of commercial Pt/C at high current densities.By replacing conventional OER with FUR,the potential required to afford the anodic current density of 10 m A cm^(-2)decreases by 95%.The HER/FUR overall reaction shows an ultralow voltage of 0.68 V for 10 m A cm^(-2)with a power equivalent of 2.69 k Wh per m^(3)H_(2).Additionally,the Fe species formed at the anode extract the Rhodamine B(Rh B)pollutant by flocculation and also produce nanosized magnetic powder and beneficiated Rh B for value-adding applications.This work demonstrates both energy-saving hydrogen production and pollutant recycling without carbon emission by a single system and reveals a new direction to integrate hydrogen production with environmental recovery to achieve carbon neutrality. 展开更多
关键词 Energy-saving hydrogen production hydrogen evolution reaction Neutral water splitting MoSe_(2)/MoO_(2)heterostructure Environmental recovery
下载PDF
Wavelength-sensitive photocatalytic H2 evolution from H2S splitting over g-C3N4 with S,N-codoped carbon dots as the photosensitizer 被引量:2
15
作者 Zhanghui Xie Shan Yu +6 位作者 Xiang-Bing Fan Shiqian Wei Limei Yu Yunqian Zhong Xue-Wang Gao Fan Wu Ying Zhou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期234-242,I0008,共10页
Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4... Photocatalytic splitting of hydrogen sulfide(H2S) for hydrogen evolution is a promising method to solve the energy and environmental issues.In this work,S,N-codoped carbon dots(S,N-CDs)/graphitic carbon nitride(g-C3N4) nanosheet is synthesized by hydrothermal method as an efficient photocatalyst for the decomposition of H2S.In addition to the characterization of the morphology and structure,chemical state,optical and electrochemical performances of S,N-CDs/g-C3N4,hydrogen evolution tests show that the activity of g-C3N4 is improved by introducing S,N-CDs,and the enhancement depends strongly on the wavelength of incident light.The photocatalytic hydrogen production rate of S,N-CDs/g-C3N4 composite reaches 832 μmol g-1h-1, which is 38 times to that of g-C3N4 under irradiation at 460 nm.Density functional theory calculations and electron paramagnetic resonance as well as photoluminescence technologies have altogether authenticated that the unique wavelength-dependent photosensitization of S,N-CDs on g-C3N4;meanwhile,a good match between the energy level of S,N-CDs and g-C3N4 is pivotal for the effective photocatalytic activity.Our work has unveiled the detailed mechanism of the photocatalytic activity enhancement in S,N-CDs/g-C3N4 composite and showed its potential in photocatalytic splitting of H2S for hydrogen evolution. 展开更多
关键词 PHOTOSENSITIZATION S N-codoped carbon dots hydrogen sulfide splitting photocatalytic hydrogen evolution
下载PDF
Hybrid water electrolysis:Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond 被引量:2
16
作者 Lijie Du Yujie Sun Bo You 《Materials Reports(Energy)》 2021年第1期141-154,共14页
Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate... Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate net carbon dioxide emissions.However,conventional water electrolyzers suffer from the high overpotentials,mainly due to the sluggish kinetics of anodic oxygen evolution reaction(OER).This reaction also generates reactive oxygen species that could degrade the proton exchange membrane and oxygen that may mix with the cathodic hydrogen to form explosive gaseous mixtures.To address these issues,an innovative hybrid water electrolysis strategy which involves a certain alternative oxidation reaction to replace OER has been developed,and has led to a burgeoning area that sparks much research interest in finding available alternative reactions and their corresponding electrocatalysts.Herein,we summarize the alternative reactions into three groups:(1)the reagentsacrificing type that can generate H2 with an ultra-low potential while the substrates are oxidized to valueless products;(2)the pollutant-degrading type at which environmental pollutants are used as substrates;(3)the valueadded type that produces valuable products at the anode.Catalyst and electrolyzer designs for hybrid electrolysis are also briefly discussed,with an emphasis on the catalyst reconstruction phenomenon.Finally,the present challenges and perspectives are put forward. 展开更多
关键词 Hybrid water splitting ELECTROCATALYSIS hydrogen evolution Organic oxidation
下载PDF
Progress in manipulating spin polarization for solar hydrogen production
17
作者 Qian Yang Xin Tong Zhiming Wang 《Materials Reports(Energy)》 EI 2024年第1期43-57,共15页
Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelect... Photocatalytic and photoelectrochemical water splitting using semiconductor materials are effective approaches for converting solar energy into hydrogen fuel.In the past few years,a series of photocatalysts/photoelectrocatalysts have been developed and optimized to achieve efficient solar hydrogen production.Among various optimization strategies,the regulation of spin polarization can tailor the intrinsic optoelectronic properties for retarding charge recombination and enhancing surface reactions,thus improving the solar-to-hydrogen(STH)efficiency.This review presents recent advances in the regulation of spin polarization to enhance spin polarized-dependent solar hydrogen evolution activity.Specifically,spin polarization manipulation strategies of several typical photocatalysts/photoelectrocatalysts(e.g.,metallic oxides,metallic sulfides,non-metallic semiconductors,ferroelectric materials,and chiral molecules)are described.In the end,the critical challenges and perspectives of spin polarization regulation towards future solar energy conversion are briefly provided. 展开更多
关键词 Spin polarization Solar energy conversion photocatalytic hydrogen production Photoelectrochemical water splitting
下载PDF
Mo-doped one-dimensional needle-like Ni_(3)S_(2) as bifunctional electrocatalyst for efficient alkaline hydrogen evolution and overall-water-splitting
18
作者 Junjie Huang Yupeng Xing +5 位作者 Jinzhao Huang Fei Li Gang Zhao Xingmin Yu Binxun Li Xinran Zhang 《ChemPhysMater》 2024年第1期74-82,共9页
Hydrogen energy plays an important role in clean energy system and is considered the core energy source for future technological development owing to its lightweight nature,high calorific value,and clean combustion pr... Hydrogen energy plays an important role in clean energy system and is considered the core energy source for future technological development owing to its lightweight nature,high calorific value,and clean combustion products.The electrocatalytic conversion of water into hydrogen is considered a highly promising method.An electrocatalyst is indispensable in the electrocatalytic process,and finding an efficient electrocatalyst is essential.However,the current commercial electrocatalysts(such as Pt/C and Ru)are expensive;therefore,there is a need to find an inexpensive and efficient electrocatalyst with high stability,corrosion resistance,and high electrocatalytic efficiency.In this study,we developed a cost-effective bifunctional electrocatalyst by incorporating molybdenum into nickel sulfide(Ni_(3)S_(2))and subsequently tailoring its structure to achieve a one-dimensional(1D)needle-like configuration.The hydrogen production efficiency of nickel sulfide was improved by changing the ratio of Mo doping.By analyzing the electrochemical performance of different Mo-doped catalysts,we found that the Ni_(3)S_(2)-Mo-0.1 electrocatalyst exhibited the best electrocatalytic effect in 1 M KOH;at a current density of 10 mA cm^(-2),it exhibited overpotentials of 120 and 279 mV for hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),respectively;at a higher current density of 100 mA cm^(-2),the HER and OER overpotentials were 396 and 495 mV,respectively.Furthermore,this electrocatalyst can be used in a two-electrode water-splitting system.Finally,we thoroughly investigated the mechanism of the overall water splitting of this electrocatalyst,providing valuable insights for future hydrogen production via overall-water-splitting. 展开更多
关键词 hydrogen evolution reaction Molybdenum doped Nickel sulfide Overall water splitting Needle-like multistage structure
原文传递
Enhancing water splitting via weakening H_(2) and O_(2) adsorption on NiCo-LDH@CdS due to interstitial nitrogen doping: A close look at the mechanism of electron transfer
19
作者 Azam Pirkarami Sousan Rasouli Ebrahim Ghasemi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期118-130,I0004,共14页
This paper is a report on the development of a convenient approach to fabricating a very efficient hybrid photoelectrocatalyst for water splitting.This photoelectrocatalyst consists of nickel-cobalt layered double hyd... This paper is a report on the development of a convenient approach to fabricating a very efficient hybrid photoelectrocatalyst for water splitting.This photoelectrocatalyst consists of nickel-cobalt layered double hydroxide as the core,cadmium sulfide as the shell,and nitrogen,hence NiCo-LDH@CdS-N.For the electrocatalytic activity to be improved,the H_(2) and O_(2) binding energy needs to be weakened.The interstitial nitrogen doping on NiCo-LDH@CdS can increase electrocatalytic activity to a great extent.NiCoLDH@CdS nanoparticles are obtained by subjecting to nitriding the NiCo-LDH@CdS electrode coated with polyvinylpyrrolidone nanosheets.This electrode has a large specific surface area,allows fast transfer of electrons,and exhibits long-term stability.The experimental results presented in this paper reveal that interstitial nitrogen doping largely reduces H_(2) and O_(2) binding energy and lowers the activation barrier for the formation and splitting of water. 展开更多
关键词 water splitting Interstitial nitrogen doping NITRIDING Two-redox/semiconductor liquid junction hydrogen evolution reaction Oxygen evolution reaction
下载PDF
Allying interfacial engineering of 2D carbon nanosheet-,graphene-,and graphdiyne-based heterostructured electrocatalysts toward hydrogen evolution and overall water splitting
20
作者 Wuwei Mo Joel Jie Foo Wee‐Jun Ong 《Electron》 2024年第1期106-163,共58页
Electrochemical hydrogen evolution reaction(HER)and overall water splitting(OWS)for renewable energy generation have recently become a highly promising and sustainable strategy to tackle energy crisis and global warmi... Electrochemical hydrogen evolution reaction(HER)and overall water splitting(OWS)for renewable energy generation have recently become a highly promising and sustainable strategy to tackle energy crisis and global warming arising from our overreliance on fossil fuels.Previously,tremendous research breakthroughs have been made in 2D carbon-based heterostructured electrocatalysts in this field.Such heterostructures are distinguished by their remarkable electrical conductivity,exposed active sites,and mechanical stability.Herein,with fundamental mechanisms of electrocatalytic OWS summarized,our review critically emphasized on state-of-the-art 2D carbon nanosheet-,graphene-,and graphdiyne-based heterostructured electrocatalysts in HER and OWS since 2018.Particularly,the three emerging carbonaceous substrates tend to be incorporated with metal carbides,phosphides,dichalcogenides,nitrides,oxides,nanoparticles,single atom catalysts,or layered double hydroxides.Meanwhile,fascinating structural engineering and facile synthesis strategies were also unraveled to establish the structure-activity relationship,which will enlighten future electrocatalyst developments toward ameliorated HER and OWS activities.Additionally,computational results from density functional theory simulations were highlighted as well to better comprehend the synergistic effects within the heterostructures.Finally,current stages and future recommendations of this brand-new electrocatalyst type were concluded and discussed for advanced catalyst designs and future practical applications. 展开更多
关键词 2D carbon-based heterostructures ELECTROCATALYSIS hydrogen evolution reaction interfacial engineering overall water splitting
原文传递
上一页 1 2 14 下一页 到第
使用帮助 返回顶部