Ce-doped ZnO nanoparticles with various doping concentrations of cerium ion were prepared by the co-precipitation method. All prepared nanoparticles were characterized by electron spin resonance (ESR), energy-dispersi...Ce-doped ZnO nanoparticles with various doping concentrations of cerium ion were prepared by the co-precipitation method. All prepared nanoparticles were characterized by electron spin resonance (ESR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectroscopy. All nanoparticles show X-ray diffraction pattern that matched with ZnO in its wurzite structure and average grain size was in the range of 13 - 16 nm. UV-Vis measurements indicated a red shift of the photophysical response of ZnO after doping that was exhibited in reflection spectra in the visible region between 300 - 800 nm. In addition, it has been found from electron spin resonance measurements that defects, which are likely to be oxygen vacancy and an electron trapped at cerium site are formed in our Ce-doped ZnO particles. Photocatalytic activities of Ce-doped ZnO were evaluated by irradiating the nanoparticles solution to ultraviolet light by taking methyl orange as organic dye. The experiment demonstrated that the photodegradation increased as doping concentrations increased at first and then decreased when the doping concentra- tion exceeded 9 at%. It is proposed that the photocatalytic activity is strongly dependent on the formation of oxygen vacancy and an electron trapped at cerium site.展开更多
Converting solar energy into electric power or hydrogen fuel is a promising means to obtain renewable green energy.Here, we design a two-dimensional blue phosphorene(BlueP)/MoSi2N4van der Waals heterostructure(vdWH) a...Converting solar energy into electric power or hydrogen fuel is a promising means to obtain renewable green energy.Here, we design a two-dimensional blue phosphorene(BlueP)/MoSi2N4van der Waals heterostructure(vdWH) and investigate its potential application in photocatalysis and photovoltaics using first-principles calculations. We find that the BlueP/MoSi2N4vdWH possesses type-Ⅱ band structure with a large build-in electric field, thus endowing it with a potential ability to separate photogenerated electron–hole pairs. The calculated band-edge positions show that the heterostructure is a very promising water-splitting photocatalyst. Its solar-to-hydrogen efficiency(ηSTH) can reach up to 15.8%, which is quite promising for commercial applications. Furthermore, the BlueP/MoSi2N4vdWH shows remarkably light absorption capacity and distinguished maximum power conversion efficiency(ηPCE) up to 10.61%. Remarkably, its ηPCEcan be further enhanced by the external strain: the ηPCEof 21.20% can be obtained under a 4% tensile strain. Finally, we determine that adjusting the number of the BlueP sublayer is another effective method to modulate the band gaps and band alignments of the heterostructures. These theoretical findings indicate that BlueP/MoSi2N4vd WH is a promising candidate for photocatalyst and photovoltaic device.展开更多
This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'g...This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications.展开更多
Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spect...Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.展开更多
An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a qu...An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.展开更多
The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)...The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.展开更多
Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)...Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.展开更多
Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for ca...Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.展开更多
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C...The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.展开更多
There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corros...There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corrosion resistance and lack of antibacterial properties pose significant challenges in the industrial and biomedical applications,necessitating the implementation of advanced coating engineering techniques.Plasma electrolytic oxidation(PEO)has emerged as a preferred coating technique because of its distinctive properties and successful surface modification results.However,there is a continuous need for further enhancements to optimize the performance and functionalities of protective surface treatments.The integration of layered double hydroxide(LDH)into PEO coatings on Mg alloys presents a promising approach to bolstering protective properties.This thorough review delves into the latest developments in integrating LDH into PEO coatings for corrosion-related purposes.It particularly emphasizes the significant improvements in corrosion resistance,antibacterial effectiveness,and photocatalytic performance resulting from the incorporation of LDH into PEO coatings.The two key mechanisms that enhance the corrosion resistance of PEO coatings containing LDH are the anion exchangeability of the LDH structure and the pore-sealing effect.Moreover,the antibacterial activity of PEO coatings with LDH stemmed from the release of antibacterial agents stored within the LDH structure,alterations in pH levels,and the photothermal conversion property.Furthermore,by incorporating LDH into PEO coatings,new opportunities emerge for tackling environmental issues through boosted photocatalytic properties,especially in the realm of pollutant degradation.展开更多
The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical ...The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.展开更多
The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on...The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on quantity and increased on scale with the increasing current density.AFM results revealed that the roughness of the coatings increased with the increasing current density.Phase and composition analysis showed that the Nd:TiO_(2) coatings were mainly composed of anatase and rutile phase.And the anatase phase content has reached the maximum value at the current density of 250 m A/cm^(2).XPS results indicated that Ti2p spin-orbit components of the Nd:TiO_(2) coatings are shifted towards higher binding energy,compared with the pure TiO_(2) coating,suggesting that some of the Nd^(3+)ions are combined with TiO_(2) lattice and led to dislocation.Photocatalytic test showed that the photocatalytic activity of Nd:TiO_(2) coatings varied in the same pattern with the anatase content variation in Nd:TiO_(2) coatings.The photocatalytic experiment results show that the photocatalytic activity of Nd:TiO_(2) coatings can be greatly enhanced with moderate amount of Nd^(3+).However,excessive amount of Nd^(3+)does not have an effective impact on the photoctalytic activity improvement.展开更多
This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis ...This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater.展开更多
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adso...Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.展开更多
Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical fun...Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.展开更多
Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electroc...Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.展开更多
In the pursuit of multifunctional coatings,the controlled growth of materials on stationary platforms holds paramount importance for achieving superior corrosion protection and optimal photocatalytic performance.This ...In the pursuit of multifunctional coatings,the controlled growth of materials on stationary platforms holds paramount importance for achieving superior corrosion protection and optimal photocatalytic performance.This study introduces a cutting-edge approach,intertwining bifunctional metal-organic frameworks(MOFs)seamlessly into defective MgO layers produced by the anodic oxidation of AZ31 alloy.Key metallic oxides of Zn,Sn,and V take center stage as metallic sources for MOF formation,complemented by the organic prowess of L-Tryptophan as anα-amino acid linker.Leveraging the electronic structure of metallic oxides reacting with tryptophan molecules,controlled morphologies with distinct characteristics are induced on the defective surface of the MgO layer,enabling the precise modulation of surface defects.The hybrid composite demonstrates an adaptive microstructure in diverse aqueous environments,offering dual functionality with electrochemical stability and visible light photocatalytic activity for crystal violet degradation.Among the samples,the SnOF complex exhibited remarkable electrochemical stability with a low corrosion current density of 7.50×10^(−10)A·cm^(−2),along with a 94.56%degradation efficiency after 90 min under visible light exposure.The VOF complex,under similar visible light conditions,demonstrated exceptional performance with a higher degradation efficiency of 97.79%and excellent electrochemical stability characterized by a corrosion current density of 3.26×10^(−9)A·cm^(−2).Additionally,Density Functional Theory(DFT)computations shed light on the basic bonding patterns between MOFs and inorganic components,providing electronic understanding of their electrochemical and photocatalytic activities.展开更多
Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and t...Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering.展开更多
Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with...Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution.展开更多
文摘Ce-doped ZnO nanoparticles with various doping concentrations of cerium ion were prepared by the co-precipitation method. All prepared nanoparticles were characterized by electron spin resonance (ESR), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and UV-Vis diffuse reflectance spectroscopy. All nanoparticles show X-ray diffraction pattern that matched with ZnO in its wurzite structure and average grain size was in the range of 13 - 16 nm. UV-Vis measurements indicated a red shift of the photophysical response of ZnO after doping that was exhibited in reflection spectra in the visible region between 300 - 800 nm. In addition, it has been found from electron spin resonance measurements that defects, which are likely to be oxygen vacancy and an electron trapped at cerium site are formed in our Ce-doped ZnO particles. Photocatalytic activities of Ce-doped ZnO were evaluated by irradiating the nanoparticles solution to ultraviolet light by taking methyl orange as organic dye. The experiment demonstrated that the photodegradation increased as doping concentrations increased at first and then decreased when the doping concentra- tion exceeded 9 at%. It is proposed that the photocatalytic activity is strongly dependent on the formation of oxygen vacancy and an electron trapped at cerium site.
基金supported by the National Natural Science Foundation of China (Grant No. 11374226)the Fundamental Research Funds for the Universities of Henan Province of China (Grant No. NSFRF200331)+1 种基金the Foundation of Henan Educational Committee (Grant No. 20A140013)by the High-performance Grid Computing Platform of Henan Polytechnic University。
文摘Converting solar energy into electric power or hydrogen fuel is a promising means to obtain renewable green energy.Here, we design a two-dimensional blue phosphorene(BlueP)/MoSi2N4van der Waals heterostructure(vdWH) and investigate its potential application in photocatalysis and photovoltaics using first-principles calculations. We find that the BlueP/MoSi2N4vdWH possesses type-Ⅱ band structure with a large build-in electric field, thus endowing it with a potential ability to separate photogenerated electron–hole pairs. The calculated band-edge positions show that the heterostructure is a very promising water-splitting photocatalyst. Its solar-to-hydrogen efficiency(ηSTH) can reach up to 15.8%, which is quite promising for commercial applications. Furthermore, the BlueP/MoSi2N4vdWH shows remarkably light absorption capacity and distinguished maximum power conversion efficiency(ηPCE) up to 10.61%. Remarkably, its ηPCEcan be further enhanced by the external strain: the ηPCEof 21.20% can be obtained under a 4% tensile strain. Finally, we determine that adjusting the number of the BlueP sublayer is another effective method to modulate the band gaps and band alignments of the heterostructures. These theoretical findings indicate that BlueP/MoSi2N4vd WH is a promising candidate for photocatalyst and photovoltaic device.
基金the National Research Foundation of Korea(NRF)funded by the Korean Government(MSIT)(No.2022R1A2C1006743)。
文摘This study presents a facile and rapid method for synthesizing novel Layered Double Hydroxide(LDH)nanoflakes,exploring their application as a photocatalyst,and investigating the influence of condensed phosphates'geometric linearity on their photocatalytic properties.Herein,the Mg O film,obtained by plasma electrolysis of AZ31 Mg alloys,was modified by growing an LDH film,which was further functionalized using cyclic sodium hexametaphosphate(CP)and linear sodium tripolyphosphate(LP).CP acted as an enhancer for flake spacing within the LDH structure,while LP changed flake dispersion and orientation.Consequently,CP@LDH demonstrated exceptional efficiency in heterogeneous photocatalysis,effectively degrading organic dyes like Methylene blue(MB),Congo red(CR),and Methyl orange(MO).The unique cyclic structure of CP likely enhances surface reactions and improves the catalyst's interaction with dye molecules.Furthermore,the condensed phosphate structure contributes to a higher surface area and reactivity in CP@LDH,leading to its superior photocatalytic performance compared to LP@LDH.Specifically,LP@LDH demonstrated notable degradation efficiencies of 93.02%,92.89%,and 88.81%for MB,MO,and CR respectively,over a 40 min duration.The highest degradation efficiencies were observed in the case of the CP@LDH sample,reporting 99.99%for MB,98.88%for CR,and 99.70%for MO.This underscores the potential of CP@LDH as a highly effective photocatalyst for organic dye degradation,offering promising prospects for environmental remediation and water detoxification applications.
基金supported by Russian Science Foundation (No.#21-73-10235)
文摘Extensive work on a Cu-modified TiO_(2) photocatalyst for CO_(2) reduction under visible light irradiation was conducted. The structure of the copper cocatalyst was established using UV-vis diff use refl ectance spectroscopy, high-resolution transmis- sion electron microscopy, X-ray absorption spectroscopy, and X-ray photoelectron spectroscopy. It was found that copper exists in different states (Cu 0 , Cu^(+) , and Cu^(2+) ), the content of which depends on the TiO_(2) calcination temperature and copper loading. The optimum composition of the cocatalyst has a photocatalyst based on TiO_(2) calcined at 700℃ and modified with 5 wt% copper, the activity of which is 22 μmol/(h·g cat ) (409 nm). Analysis of the photocatalysts after the photocatalytic reaction disclosed that the copper metal on the surface of the calcined TiO_(2) was gradually converted into Cu_(2) O during the photocatalytic reaction. Meanwhile, the metallic copper on the surface of the noncalcined TiO_(2) did not undergo any trans- formation during the reaction.
基金the financial supports from National Natural Science Foundation of China(22172066,22378176)supported by State Key Laboratory of Heavy Oil ProcessingSupported by Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment,Suzhou University of Science and Technology。
文摘An efficient mass transfer process is a critical factor for regulating catalytic activity in a photocatalytic desulfurization system.Herein,a phosphotungstic acid(HPW)active center is successfully composited with a quaternary ammonium phosphotungstate-based hexadecyltrimethylammonium chloride ionic liquid(CTAC-HPW)by the ion exchange method for the photocatalytic oxidative desulfurization of dibenzothiophene sulfide.The keggin structure of HPW and highly mass transfer performance of organic cations synergistically enhanced the photocatalytic activity towards the effective convertion of dibenzothiophene(DBT)with the excitation of visible light.The deep desulfurization(<10 mg·kg^(-1))is attained within 30 min,and well stability is demonstrated within 25 cycles.Moreover,the CTAC-HPW photocatalyst projects well selectivity to interference from coexisting compounds such as olefins and aromatic hydrocarbons and universality of dibenzothiophenes,for example,4-methyldibenzothiophene(4-MDBT)and 4,6-dimethyldibenzothiophene(4,6-DMDBT).Ultimately,a possible photocatalytic desulfurization mechanism is proposed according to the Gaschromatography-mass spectrometry(GC-MS),proving that the final product is the corresponding sulfone.The trapping experiment and electron spin resonance(ESR)analysis confirmed that h^(+)and,COOH played critical roles in the oxidation process.The work offers a practicable strategy for efficiently converting DBT to DBTO_(2) with added value.
基金the funding support from the National Natural Science Foundation of China(21906072,22006057)the Natural Science Foundation of Jiangsu Province(BK20190982)“Doctor of Mass entrepreneurship and innovation”Project in Jiangsu Province。
文摘The synergistic reaction of photocatalysis and advanced oxidation is a valid strategy for the degradation of harmful antibiotic wastewater.Herein,carbon dots(CDs)modified MIL-101(Fe)octahedrons to form CDs/MIL-101(Fe)composite photocatalyst was synthesized for visible light-driven photocatalytic/persulfate(PS)-activated tetracycline(TC)degradation.The electron spin resonance(ESR)spectra,scavenging experiment and electrochemical analysis were carried out to reveal that the high visible light-driven photocatalytic degradation activity of TC over CDs/MIL-101(Fe)photocatalysts is not only ascribed to the production of free active radicals in the CDs/MIL-101(Fe)/PS system(·OH,·SO_(4-),^(1)O_(2),h^(+)and·O_(2)^(-))but also attributed to the consumption of electrons caused by the PS,which can suppress the recombination of photo-generated carriers as well as strong light scattering and electron trapping effects of CDs.Finally,the possible degradation pathways were proposed by analyzing intermediates via liquid chromatography-mass spectrometry technique.This research presents a rational design conception to construct a CDs/PS-based photocatalysis/advanced oxidation technology with high-efficient degradation activity for the remediation of organic antibiotic pollutant wastewater and for the improvement of carrier transport kinetics of photocatalysts.
基金financial support from the National Natural Science Foundation of China(No.22272038)the Science and Technology Planning Project of Guangzhou City(No.2023A03J0026)。
文摘Developing suitable photocatalysts and understanding their intrinsic catalytic mechanism remain key challenges in the pursuit of highly active,good selective,and long-term stable photocatalytic CO_(2)reduction(PCO_(2)R)systems.Herein,monoclinic Cu_(2)(OH)_(2)CO_(3)is firstly proven to be a new class of photocatalyst,which has excellent catalytic stability and selectivity for PCO_(2)R in the absence of any sacrificial agent and cocatalysts.Based on a Cu_(2)(OH)_(2)^(13)CO_(3)photocatalyst and 13CO_(2)two-sided^(13)C isotopic tracer strategy,and combined with in situ diffused reflectance infrared Fourier transform spectroscopy(DRIFTS)analysis and density functional theory(DFT)calculations,two main CO_(2)transformation routes,and the photo-decomposition and self-restructuring dynamic equilibrium mechanism of Cu_(2)(OH)_(2)CO_(3)are definitely revealed.The PCO_(2)R activity of Cu_(2)(OH)_(2)CO_(3)is comparable to some of state-of-the-art novel photocatalysts.Significantly,the PCO_(2)R properties can be further greatly enhanced by simply combining Cu_(2)(OH)_(2)CO_(3)with typical TiO_(2)to construct composites photocatalyst.The highest CO_(2)and CH_(4)production rates by 7.5 wt%Cu_(2)(OH)_(2)CO_(3)-TiO_(2)reach 16.4μmol g^(-1)h^(-1)and 116.0μmol g^(-1)h^(-1),respectively,which are even higher than that of some of PCO_(2)R systems containing sacrificial agents or precious metals modified photocatalysts.This work provides a better understanding for the PCO_(2)R mechanism at the atomic levels,and also indicates that basic carbonate photocatalysts have broad application potential in the future.
基金supported by the National Natural Science Foundation of China (22178149)Jiangsu Distinguished Professor Program+4 种基金Natural Science Foundation of Jiangsu Province for Outstanding Youth Scientists (BK20211599)Key R and D Project of Zhenjiang City (CQ2022001)Scientific Research Startup Foundation of Jiangsu University (Nos. 202096 and 22JDG020)Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment of Fuzhou University (SKLPEE-KF202310)the Opening Project of Structural Optimization and Application of Functional Molecules Key Laboratory of Sichuan Province (2023GNFZ-01)。
文摘Carbon dioxide conversion into valuable products using photocatalysis and electrocatalysis is an effective approach to mitigate global environmental issues and the energy shortages. Among the materials utilized for catalytic reduction of CO_(2), Cu-based materials are highly advantageous owing to their widespread availability, cost-effectiveness, and environmental sustainability. Furthermore, Cu-based materials demonstrate interesting abilities in the adsorption and activation of carbon dioxide, allowing the formation of C_(2+) compounds through C–C coupling process. Herein, the basic principles of photocatalytic CO_(2) reduction reactions(PCO_(2)RR) and electrocatalytic CO_(2) reduction reaction(ECO_(2)RR) and the pathways for the generation C_(2+) products are introduced. This review categorizes Cu-based materials into different groups including Cu metal, Cu oxides, Cu alloys, and Cu SACs, Cu heterojunctions based on their catalytic applications. The relationship between the Cu surfaces and their efficiency in both PCO_(2)RR and ECO_(2)RR is emphasized. Through a review of recent studies on PCO_(2)RR and ECO_(2)RR using Cu-based catalysts, the focus is on understanding the underlying reasons for the enhanced selectivity toward C_(2+) products. Finally, the opportunities and challenges associated with Cu-based materials in the CO_(2) catalytic reduction applications are presented, along with research directions that can guide for the design of highly active and selective Cu-based materials for CO_(2) reduction processes in the future.
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
基金Natural Science Foundation of Shandong Province,Grant/Award Number:ZR2022MB106national training program of innovation and entrepreneurship for undergraduates,Grant/Award Number:202210424099National Natural Science Foundation of China,Grant/Award Numbers:21601067,21701057,21905147。
文摘The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment.
文摘There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corrosion resistance and lack of antibacterial properties pose significant challenges in the industrial and biomedical applications,necessitating the implementation of advanced coating engineering techniques.Plasma electrolytic oxidation(PEO)has emerged as a preferred coating technique because of its distinctive properties and successful surface modification results.However,there is a continuous need for further enhancements to optimize the performance and functionalities of protective surface treatments.The integration of layered double hydroxide(LDH)into PEO coatings on Mg alloys presents a promising approach to bolstering protective properties.This thorough review delves into the latest developments in integrating LDH into PEO coatings for corrosion-related purposes.It particularly emphasizes the significant improvements in corrosion resistance,antibacterial effectiveness,and photocatalytic performance resulting from the incorporation of LDH into PEO coatings.The two key mechanisms that enhance the corrosion resistance of PEO coatings containing LDH are the anion exchangeability of the LDH structure and the pore-sealing effect.Moreover,the antibacterial activity of PEO coatings with LDH stemmed from the release of antibacterial agents stored within the LDH structure,alterations in pH levels,and the photothermal conversion property.Furthermore,by incorporating LDH into PEO coatings,new opportunities emerge for tackling environmental issues through boosted photocatalytic properties,especially in the realm of pollutant degradation.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications.
基金Supported by the Open Project Foundation of Industrial Perception and Intelligent Manufacturing Equipment Engineering Research Center of Jiangsu Province (No. ZK220504)the Open Project Foundation of High-tech Key Laboratory of Agricultural Equipment and Intelligence of Jiangsu Province (No. MAET202104)+1 种基金the Open Project Foundation of Jiangsu Wind Power Engineering Technology Center (No. ZK220302)the Qing Lan Project of Jiangsu Province,China。
文摘The Nd:TiO_(2 )PEO coatings were formed in a phosphate-based electrolyte with the addition of Nd_(2)O_(3 )under the current density of 150,200,250 and 300 m A/cm^(2).SEM results showed that the micropores decreased on quantity and increased on scale with the increasing current density.AFM results revealed that the roughness of the coatings increased with the increasing current density.Phase and composition analysis showed that the Nd:TiO_(2) coatings were mainly composed of anatase and rutile phase.And the anatase phase content has reached the maximum value at the current density of 250 m A/cm^(2).XPS results indicated that Ti2p spin-orbit components of the Nd:TiO_(2) coatings are shifted towards higher binding energy,compared with the pure TiO_(2) coating,suggesting that some of the Nd^(3+)ions are combined with TiO_(2) lattice and led to dislocation.Photocatalytic test showed that the photocatalytic activity of Nd:TiO_(2) coatings varied in the same pattern with the anatase content variation in Nd:TiO_(2) coatings.The photocatalytic experiment results show that the photocatalytic activity of Nd:TiO_(2) coatings can be greatly enhanced with moderate amount of Nd^(3+).However,excessive amount of Nd^(3+)does not have an effective impact on the photoctalytic activity improvement.
文摘This review paper explores the efficacy of magnesium ferrite-based catalysts in photocatalytic degradation of organic contaminates(antibiotic and dyes).We report the influence of different doping strategies,synthesis methods,and composite materials on the degradation efficiency of these pollutants.Our analysis reveals the versatile and promising nature of magnesium ferrite-based catalysts,offering the valuable insights into their practical application for restoring the environment.Due to the smaller band gap and magnetic nature of magnesium ferrite,it holds the benefit of utilising the broader spectrum of light while also being recoverable.The in-depth analysis of magnesium ferrites'photocatalytic mechanism could lead to the development of cheap and reliable photocatalyst for the wastewater treatment.This concise review offers a thorough summary of the key advancements in this field,highlighting the pivotal role of the magnesium ferrite based photocatalysts in addressing the pressing global issue of organic pollutants in wastewater.
基金National Natural Science Foundation of China(Grant No.21902001,22179001)Distinguished Young Research Project of Anhui Higher Education Institution(Grant No.2022AH020007)+1 种基金University Synergy Innovation Program of Anhui Province(Grant No.GXXT-2023-009)Higher Education Natural Science Foundation of Anhui Province(Grant No.2023AH050114).
文摘Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes.Herein,we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts.The adsorption and photocatalytic degradation process of methylene blue(MB)on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives.A possible adsorption‐photocatalytic degradation mechanism is proposed.The optimized 1M8G composite achieves 95%MB removal(60.8 mg/g)in 210 min and displays well recyclability over ten cycles.The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model.This study shed light on the design of MOFs based composites for water treatment.
基金the following funding agencies for supporting this work: the National Natural Science Foundation of China (22025502, U23A20552, 22379026, 22222901, 22175022)the Natural Science Foundation of Shanghai (23ZR1407000)the Science and Technology Commission of Shanghai Municipality (21DZ1206800)
文摘Polyolefins such as polyethylene(PE)are one of the largest-scale synthetic plastics and play a key role in modern society.However,polyethylene is extremely inert to chemical recycling owing to its lack of chemical functionality and low polarity,making it one of the most challenging environmental hazards globally.Herein,we developed a phosphorylated CeO_(2)catalyst by an organophosphate precursor and featured efficient photocatalysis of low-density polyethylene(LDPE)without the acid or alkaline pre-treatment.Compared to pristine CeO_(2),the surface phosphorylation allows to introduce Brønsted acid sites,which facilitate to form carbonium ions on LDPE via protonation.In addition,the suitable band structure of the phosphorylated CeO_(2)catalyst enables efficient photoabsorption and generates reactive oxygen species,leading to the C–C bond cleavage of LDPE.As a result,the phosphorylated CeO_(2)catalyst exhibited an outstanding carbon conversion rate of>94%after 48 h of photocatalysis under 50 mW/cm^(2)of simulated sunlight,with a high CO_(2)product selectivity of>99%.Furthermore,the PE microparticles with sizes larger than 10μm released from LDPE plastic wrap were directly and completely degraded by photocatalysis within 12 h,suggesting an attractive and environmentally benign strategy of utilizing solar energy-based photocatalysis for reducing potential hazards of LDPE plastic trashes.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘Modulating metal-organic framework’s(MOF)crystallinity and size using a polymer,in conjunction with a high surface area of layered double hydroxide,yields an effective strategy for concurrently enhancing the electrochemical and photocatalytic performance.In this study,we present the development of an optimized nanocomposite,denoted as 0.5PVP/ZIF-67,developed on AZ31 magnesium alloy,serving as an efficient and durable multifunctional coating.This novel strategy aims to enhance the overall performance of the porous coating through the integration of microarc oxidation(MAO),ZnFe LDH backbone,and ZIF-67 formation facilitated by the addition of polyvinylpyrrolidone(PVP),resulting in a three-dimensional,highly efficient,and multifunctional material.The incorporation of 0.5 g of PVP proved to be effective in the size modulation of ZIF-67,which formed a corrosion-resistant top layer,improving the total polarization resistance(R_(p)=8.20×10^(8)).The dual functionality exhibited by this hybrid architecture positions it as a promising candidate for mitigating environmental pollution,degrading 97.93%of Rhodamine B dye in 45 min.Moreover,the sample displayed exceptional degradation efficiency(96.17%)after 5 cycles.This study illuminates the potential of nanocomposites as electrochemically stable and photocatalytically active materials,laying the foundation for the advancements of next-generation multifunctional frameworks.
基金supported by the National Research Foundation of Korea(NRF)funded by the Korean government(MSIT)(No.2022R1A2C1006743).
文摘In the pursuit of multifunctional coatings,the controlled growth of materials on stationary platforms holds paramount importance for achieving superior corrosion protection and optimal photocatalytic performance.This study introduces a cutting-edge approach,intertwining bifunctional metal-organic frameworks(MOFs)seamlessly into defective MgO layers produced by the anodic oxidation of AZ31 alloy.Key metallic oxides of Zn,Sn,and V take center stage as metallic sources for MOF formation,complemented by the organic prowess of L-Tryptophan as anα-amino acid linker.Leveraging the electronic structure of metallic oxides reacting with tryptophan molecules,controlled morphologies with distinct characteristics are induced on the defective surface of the MgO layer,enabling the precise modulation of surface defects.The hybrid composite demonstrates an adaptive microstructure in diverse aqueous environments,offering dual functionality with electrochemical stability and visible light photocatalytic activity for crystal violet degradation.Among the samples,the SnOF complex exhibited remarkable electrochemical stability with a low corrosion current density of 7.50×10^(−10)A·cm^(−2),along with a 94.56%degradation efficiency after 90 min under visible light exposure.The VOF complex,under similar visible light conditions,demonstrated exceptional performance with a higher degradation efficiency of 97.79%and excellent electrochemical stability characterized by a corrosion current density of 3.26×10^(−9)A·cm^(−2).Additionally,Density Functional Theory(DFT)computations shed light on the basic bonding patterns between MOFs and inorganic components,providing electronic understanding of their electrochemical and photocatalytic activities.
基金support of this research by the National Natural Science Foundation of China(Grant No.51909165,42177438)the Start-up Research Funding of Southwest Jiaotong University(YH1100312372222)+4 种基金the Fundamental Research Funds for the Central Universities(XJ2022003201)Science and Technology Program of Guangzhou(2019050001)National Key Research and Development Program of China(2019YFE0198000)the High-End Foreign Experts Project(G2021030016L)Pearl River Talent Program(2019QN01L951)
文摘Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering.
基金supported by the Shandong Provincial Natural Science Foundation(ZR2022ME179,ZR2021QE086)the Shandong Provincial Key Research and Development Program(Public Welfare Science and Technology Research)(2019GGX103010)+2 种基金the Science and Technology Planning Project of Higher School in Shandong Province(J18KA243)the Liaocheng Key Research and Development Program(Policy guidance category)(2022YDSF90)the Liaocheng University High-level Talents&PhD Research Startup Foundation(318051619)。
文摘Rational design of photocatalyst to maximize the use of sunlight is one of the issues to be solved in photocatalysis technology.In this study,the CuFe_(2)O_(4)@C/Cd_(0.9)Zn_(0.1)S(CFO@C/CZS)S-scheme photocatalyst with photothermal effect was synthesized by ultrasonic self-assembly combined with calcination.The dark CFO@C absorbed visible light and partly converted into heat to promote the hydrogen evolution reaction.The presence of heterojunctions inhibited the photogenerated electron-hole recombination.The graphite-carbon layer provided a stable channel for electron transfer,and the presence of magnetic CFO made recycle easier.Under the action of photothermal assistance and heterojunction,the hydrogen evolution rate of the optimal CFO@C/CZS was 80.79 mmol g^(-1) h^(-1),which was 2.55 times and 260.61 times of that of pure CZS and CFO@C,respectively.Notably,the composite samples also exhibit excellent stability and a wide range of environmental adaptability.Through experimental tests and first-principles simulation calculation methods,the plausible mechanism of photoactivity enhancement was proposed.This work provided a feasible strategy of photothermal assistance for the development of heterojunction photocatalysts with distinctive hydrogen evolution.