Under the impetus of environmental protection policies,the discharge requirements for leachate are becoming more and more stringent.Therefore,the treatment technology of landfill leachate has become a hot research top...Under the impetus of environmental protection policies,the discharge requirements for leachate are becoming more and more stringent.Therefore,the treatment technology of landfill leachate has become a hot research topic at present.In this paper,the chemical composition and water quality characteristics of landfill leachate were briefly introduced,and the characteristics and performance of nanofiltration technology were summarized at first.Afterwards,the recent advances in the application of nanofiltration combination technology in the treatment of landfill leachate at home and abroad were summarized,and the research and application of the combination of membrane separation,chemical coagulation,chemical oxidation and adsorption methods with nanofiltration membrane in the treatment of landfill leachate were mainly introduced.Finally,it is proposed that the combination of nanofiltration technology is feasible and economical,and its reasonable selection and optimization are the directions of future research and have good application prospects.展开更多
Through PRB simulated device and orthogonal test,we discussed the treatment effect of groundwater polluted by landfill leachate with three reaction mediums of zero-valent iron powder,activated carbon and zeolite. We c...Through PRB simulated device and orthogonal test,we discussed the treatment effect of groundwater polluted by landfill leachate with three reaction mediums of zero-valent iron powder,activated carbon and zeolite. We considered four factors of iron powder mass,activated carbon mass,particle size of iron powder and zeolite mass,and designed a two-level orthogonal test. It concluded that effluent pH appeared to fall or rise as the reaction proceeded,which changed during 7- 8. The removal rates of CODCrin eight reactors were during 60. 7%- 78. 3%,and the removal rates of NH3-N were during 34. 0%- 58. 8%. Activated carbon mass and the interaction of iron powder mass and activated carbon mass had significant influences on the removal of CODCr,while iron powder mass,particle size of iron powder and zeolite mass had insignificant influences on the removal of CODCr. Zeolite mass and activated carbon mass had significant influences on the removal of NH3,while iron powder mass,particle size of iron powder and the interaction with activated carbon mass had insignificant influences on the removal of NH3-N.展开更多
Landfill leachate is mainly the result of precipitation of water into the layers of buried waste, and biochemical reactions of waste that has dangerous substances and pollutants that lead to the contamination of surfa...Landfill leachate is mainly the result of precipitation of water into the layers of buried waste, and biochemical reactions of waste that has dangerous substances and pollutants that lead to the contamination of surface and groundwater resources. Therefore, it must be collected and treated properly. The investigation of various biological methods in leachate treatment, their advantages and disadvantages, and their effect on reduction of COD (chemical oxygen demand) are the objectives of this study. Reviewed processes include anaerobic and aerobic sequencing batch reactor, up-flow anaerobic sludge blanket, moving-bed biofilm reactor, membrane bioreactor, and aerated lagoons, lead to reduction of biodegradability pollutants in different circumstances. The present study has indicated that the most and the least reduction of COD has been through aerated lagoon (95%) and moving-bed biofilm reactor (8%), respectively.展开更多
According to different mechanism of microbial degradation of organics, this article divided the treatment processes of garbage landfill into four kinds, analyzed each kind of the treatment leachate process and present...According to different mechanism of microbial degradation of organics, this article divided the treatment processes of garbage landfill into four kinds, analyzed each kind of the treatment leachate process and presented a better improved process. (Author abstract) 4 Refs.展开更多
Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills,landfill leachate is becoming a significant reservoir of microplastics.The release of microplastics fro...Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills,landfill leachate is becoming a significant reservoir of microplastics.The release of microplastics from landfill leachate into the environment can have undesirable effects on humans and biota.This study provides the state of the science regarding the source,detection,occurrence,and remediation of microplastics in landfill leachate based on a comprehensive review of the scientific literature,mostly in the recent decade.Solid waste and wastewater treatment residue are the primary sources of microplastics in landfill leachate.Microplastic concentration in raw and treated landfill leachate varied between 0-382 and 0-2.7 items L^(−1).Microplastics in raw landfill leachate are largely attributable to local plastic waste production and solid waste management practices.Polyethylene,polystyrene,and polypropylene are the most prevalent microplastic polymers in landfill leachate.Even though the colors of microplastics are primarily determined by their parent plastic waste,the predominance of light-colored microplastics in landfill leachate indicates long-term degradation.The identified morphologies of microplastics in leachate from all published sources contain fiber and fragments the most.Depending on the treatment method,leachate treatment processes can achieve microplastic removal rates between 3%and 100%.The review also provides unique perspectives on microplastics in landfill leachate in terms of remediation,final disposal,fate and transport among engineering systems,and source reduction,etc.The landfill-wastewater treatment plant loop and bioreactor landfills present unique difficulties and opportunities for managing microplastics induced by landfill leachate.展开更多
The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerob...The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A^2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A^2/O), recycling sludge without air (low oxygen) and a combination of both (A^2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A^2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efflciencies of COD and NH3- N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.展开更多
Palm oil mill effluent(POME)is defined as the wastewater that contains high concentrations of organics,nutrients and oil and grease generated from the production process of palm oil.Therefore,proper discharge and mana...Palm oil mill effluent(POME)is defined as the wastewater that contains high concentrations of organics,nutrients and oil and grease generated from the production process of palm oil.Therefore,proper discharge and management of POME is important to avoid deleterious impact on the environment.In fact,solid waste generation is a precursor for its disposal issues as most of the solid waste generated in developing nations is dumped into landfills.This has led to the threat posed by the generation of landfill leachate(LL).LL is a complex dark coloured liquid consisting of organic matter,inorganic substances,trace elements and xenobiotics.Hence,it is essential to effectively treat the landfill leachate before discharging it to avoid contamination of soil,surface&groundwater bodies.Conventional treatment methods comprises of physical,biological and chemical treatment,however,microalgal-based treatment could also be incorporated.Furthermore,with the benefits offered by microalgae in valorisation,the application of microalgae in POME and leachate treatment as well as biofuel production,is considerably viable.This paper provides an acumen of the microalgae-based treatment of POME and LL,integrated with biofuel production in a systematic and critical manner.The pollutants assimilation from wastewater and CO_(2)biosequestration are discussed for environmental protection.Cultivation systems for wastewater treatment with simultaneous biomass production and its valorisation,are summarised.The study aims to provide insight to industrial stakeholders on economically viable and environmentally sustainable treatment of wastewaters using microalgae,and eventually contributing to the circular bioeconomy and environmental sustainability.展开更多
A membrane bioreactor (MBR) with an air-lift bioreactor and gravity flow is applied to treating landfill leachate. More than 99% of BOD5 (biochemical oxygen demand for five days) removal effi-ciency is achieved with l...A membrane bioreactor (MBR) with an air-lift bioreactor and gravity flow is applied to treating landfill leachate. More than 99% of BOD5 (biochemical oxygen demand for five days) removal effi-ciency is achieved with less than 35 mg/L of BOD_5 in the effluent at less than 1.71 kg BOD5/m^3·d of BOD_5 loading rate. When DO (dissolved oxygen) is maintained at the range of 2.3―2.8 mg/L and the loading rate of NH_4^+-N (ammonium nitrogen) is kept at 0.16― 0.24 kg NH_4^+-N/m^3·d, the NH_4^+-N in the effluent is less than 15 mg/L. However, compared with high removal rates of BOD_5 and NH_4^+-N, the removal effi-ciency of soluble chemical oxygen demand (SCOD) varies between 70% and 96%. The investigation of molecular weight (MW) distribution has been carried out by the gel permeation chromatography (GPC) so as to understand the fate of organic matters in the MBR treating of landfill leachate. Results indicate that organic matters of the landfill leachate are composed of a high MW fraction (MW of the peak, MWp = 11480―13182 Da) and a low MW fraction (MWp = 158―275 Da). The high MW fraction is not biode-gradable, but can be decreased with microfiltration membrane. The most of the low MW fraction is bio-degradable, but the residue of the low MW fraction is able to permeate through the membrane, thus re-sulting in high SCOD in the effluent of the MBR.展开更多
This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done ...This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.展开更多
Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate...Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon).展开更多
The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative ...The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid.展开更多
基金Supported by Science and Technology Project of Shaanxi Yanchang Petroleum(Group)Co.,Ltd.(YCSY2020kyA-14).
文摘Under the impetus of environmental protection policies,the discharge requirements for leachate are becoming more and more stringent.Therefore,the treatment technology of landfill leachate has become a hot research topic at present.In this paper,the chemical composition and water quality characteristics of landfill leachate were briefly introduced,and the characteristics and performance of nanofiltration technology were summarized at first.Afterwards,the recent advances in the application of nanofiltration combination technology in the treatment of landfill leachate at home and abroad were summarized,and the research and application of the combination of membrane separation,chemical coagulation,chemical oxidation and adsorption methods with nanofiltration membrane in the treatment of landfill leachate were mainly introduced.Finally,it is proposed that the combination of nanofiltration technology is feasible and economical,and its reasonable selection and optimization are the directions of future research and have good application prospects.
基金Supported by Natural Science Foundation Project of Shandong Province,China(2013ZRA16006)Science Research Foundation Project of Binzhou University,China(BZXYG1108)
文摘Through PRB simulated device and orthogonal test,we discussed the treatment effect of groundwater polluted by landfill leachate with three reaction mediums of zero-valent iron powder,activated carbon and zeolite. We considered four factors of iron powder mass,activated carbon mass,particle size of iron powder and zeolite mass,and designed a two-level orthogonal test. It concluded that effluent pH appeared to fall or rise as the reaction proceeded,which changed during 7- 8. The removal rates of CODCrin eight reactors were during 60. 7%- 78. 3%,and the removal rates of NH3-N were during 34. 0%- 58. 8%. Activated carbon mass and the interaction of iron powder mass and activated carbon mass had significant influences on the removal of CODCr,while iron powder mass,particle size of iron powder and zeolite mass had insignificant influences on the removal of CODCr. Zeolite mass and activated carbon mass had significant influences on the removal of NH3,while iron powder mass,particle size of iron powder and the interaction with activated carbon mass had insignificant influences on the removal of NH3-N.
文摘Landfill leachate is mainly the result of precipitation of water into the layers of buried waste, and biochemical reactions of waste that has dangerous substances and pollutants that lead to the contamination of surface and groundwater resources. Therefore, it must be collected and treated properly. The investigation of various biological methods in leachate treatment, their advantages and disadvantages, and their effect on reduction of COD (chemical oxygen demand) are the objectives of this study. Reviewed processes include anaerobic and aerobic sequencing batch reactor, up-flow anaerobic sludge blanket, moving-bed biofilm reactor, membrane bioreactor, and aerated lagoons, lead to reduction of biodegradability pollutants in different circumstances. The present study has indicated that the most and the least reduction of COD has been through aerated lagoon (95%) and moving-bed biofilm reactor (8%), respectively.
文摘According to different mechanism of microbial degradation of organics, this article divided the treatment processes of garbage landfill into four kinds, analyzed each kind of the treatment leachate process and presented a better improved process. (Author abstract) 4 Refs.
基金This work is financially supported by a grant sponsored by the National Science Foundation,award number 2101053,and a grant sponsored by the North Carolina Attorney General Office's Environmental Enhancement Grant titled“Environmental Impacts of Landfill Induced Anthropogenic Dissolved Organic Nitrogen in Eastern North Carolina Estuaries”.
文摘Due to the accumulation of an enormous amount of plastic waste from municipal and industrial sources in landfills,landfill leachate is becoming a significant reservoir of microplastics.The release of microplastics from landfill leachate into the environment can have undesirable effects on humans and biota.This study provides the state of the science regarding the source,detection,occurrence,and remediation of microplastics in landfill leachate based on a comprehensive review of the scientific literature,mostly in the recent decade.Solid waste and wastewater treatment residue are the primary sources of microplastics in landfill leachate.Microplastic concentration in raw and treated landfill leachate varied between 0-382 and 0-2.7 items L^(−1).Microplastics in raw landfill leachate are largely attributable to local plastic waste production and solid waste management practices.Polyethylene,polystyrene,and polypropylene are the most prevalent microplastic polymers in landfill leachate.Even though the colors of microplastics are primarily determined by their parent plastic waste,the predominance of light-colored microplastics in landfill leachate indicates long-term degradation.The identified morphologies of microplastics in leachate from all published sources contain fiber and fragments the most.Depending on the treatment method,leachate treatment processes can achieve microplastic removal rates between 3%and 100%.The review also provides unique perspectives on microplastics in landfill leachate in terms of remediation,final disposal,fate and transport among engineering systems,and source reduction,etc.The landfill-wastewater treatment plant loop and bioreactor landfills present unique difficulties and opportunities for managing microplastics induced by landfill leachate.
基金supported by the Hubei Provincial Science and Technology Department(No.2006AA305A05)the China Scholarship Council (CSC)China University of Geosciences (CUG) for the financial support of this research
文摘The removal of biological nutrient from mature landfill leachate with a high nitrogen load by an internal circulation upflow sludge blanket (ICUSB) reactor was studied. The reactor is a set of anaerobic-anoxic-aerobic (A^2/O) bioreactors, developed on the basis of an expended granular sludge blanket (EGSB), granular sequencing batch reactor (GSBR) and intermittent cycle extended aeration system (ICEAS). Leachate was subjected to stripping by agitation process and poly ferric sulfate coagulation as a pretreatment process, in order to reduce both ammonia toxicity to microorganisms and the organic contents. The reactor was operated under three different operating systems, consisting of recycling sludge with air (A^2/O), recycling sludge without air (low oxygen) and a combination of both (A^2/O and low oxygen). The lowest effluent nutrient levels were realised by the combined system of A^2/O and low oxygen, which resulted in effluent of chemical oxygen demand (COD), NH3-N and biological oxygen demand (BOD5) concentrations of 98.20, 13.50 and 22.50 mg/L. The optimal operating conditions for the efficient removal of biological nutrient using the ICUSB reactor were examined to evaluate the influence of the parameters on its performance. The results showed that average removal efflciencies of COD and NH3- N of 96.49% and 99.39%, respectively were achieved under the condition of a hydraulic retention time of 12 hr, including 4 hr of pumping air into the reactor, with dissolved oxygen at an rate of 4 mg/L and an upflow velocity 2 m/hr. These combined processes were successfully employed and effectively decreased pollutant loading.
基金supported by the Fundamental Research Grant Scheme,Malaysia(No.FRGS/1/2019/STG05/UNIM/02/2)MyPAIR-PHC-Hibiscus Grant(No.MyPAIR/1/2020/STG05/UNIM/1)Kurita Water and Environment Foundation(KWEF)(No.21Pmy004-21 R)。
文摘Palm oil mill effluent(POME)is defined as the wastewater that contains high concentrations of organics,nutrients and oil and grease generated from the production process of palm oil.Therefore,proper discharge and management of POME is important to avoid deleterious impact on the environment.In fact,solid waste generation is a precursor for its disposal issues as most of the solid waste generated in developing nations is dumped into landfills.This has led to the threat posed by the generation of landfill leachate(LL).LL is a complex dark coloured liquid consisting of organic matter,inorganic substances,trace elements and xenobiotics.Hence,it is essential to effectively treat the landfill leachate before discharging it to avoid contamination of soil,surface&groundwater bodies.Conventional treatment methods comprises of physical,biological and chemical treatment,however,microalgal-based treatment could also be incorporated.Furthermore,with the benefits offered by microalgae in valorisation,the application of microalgae in POME and leachate treatment as well as biofuel production,is considerably viable.This paper provides an acumen of the microalgae-based treatment of POME and LL,integrated with biofuel production in a systematic and critical manner.The pollutants assimilation from wastewater and CO_(2)biosequestration are discussed for environmental protection.Cultivation systems for wastewater treatment with simultaneous biomass production and its valorisation,are summarised.The study aims to provide insight to industrial stakeholders on economically viable and environmentally sustainable treatment of wastewaters using microalgae,and eventually contributing to the circular bioeconomy and environmental sustainability.
文摘A membrane bioreactor (MBR) with an air-lift bioreactor and gravity flow is applied to treating landfill leachate. More than 99% of BOD5 (biochemical oxygen demand for five days) removal effi-ciency is achieved with less than 35 mg/L of BOD_5 in the effluent at less than 1.71 kg BOD5/m^3·d of BOD_5 loading rate. When DO (dissolved oxygen) is maintained at the range of 2.3―2.8 mg/L and the loading rate of NH_4^+-N (ammonium nitrogen) is kept at 0.16― 0.24 kg NH_4^+-N/m^3·d, the NH_4^+-N in the effluent is less than 15 mg/L. However, compared with high removal rates of BOD_5 and NH_4^+-N, the removal effi-ciency of soluble chemical oxygen demand (SCOD) varies between 70% and 96%. The investigation of molecular weight (MW) distribution has been carried out by the gel permeation chromatography (GPC) so as to understand the fate of organic matters in the MBR treating of landfill leachate. Results indicate that organic matters of the landfill leachate are composed of a high MW fraction (MW of the peak, MWp = 11480―13182 Da) and a low MW fraction (MWp = 158―275 Da). The high MW fraction is not biode-gradable, but can be decreased with microfiltration membrane. The most of the low MW fraction is bio-degradable, but the residue of the low MW fraction is able to permeate through the membrane, thus re-sulting in high SCOD in the effluent of the MBR.
基金the Department of Environmental Engineering Second Phase of 211 Project, Peking University (Grant No. 211-2-Department of Environmental Engi-neering-09)
文摘This paper focuses on the outcome and the main performance of the immobilized microbial that treats landfill leachate. Based on the analysis of COD and ammonia-nitrogen of the influent and effluent, research was done on the high removal efficiency of COD and ammonium nitrogen by immobilized microbial. The leachate composition was analyzed qualitatively using GC-MS before and after being treated. Biological loading of efficient microbial flora on the carrier was measured by Kjeldahl’s method. Finally, the patterns of immobilized microbe were observed through scanning electron microscopy (SEM). The results showed that in immobilized microorganisms system, the efficiencies of COD and nitrogen were 98.3% and 99.9%, respectively. There was a great reduction of organic components in effluent. When the immobilized biomass on the carrier was 38 g·L?1 (H2O), the filamentous microorganism was highly developed. There was no inhibitory effect on the nitrobacteria and nitrococcus, when ammonia was over 200 mg·L?1 and NH3 over 150 mg·L?1. At a high organic loading, it still had good nitrification. This paper also compares the performance of immobilized microbial with free microbial under the same condition. The immobilized microbial technology demonstrated better than the latter in all aspects.
文摘Nearly 91% of organic pollutants in Hong Kong leachate could be effectively removed by the UASB(upflow anaerobic sludge blanket) process followed by the fenton coagulation. The COD (chemical oxygen demand) of leachate was lowered from an average of 5620 mg/L to 1910 mg/L after the UASB treatment at 37℃, and was further lowered to 513 mg/L after fenton coagulation. The remaining refractory residues could be further removed by photochemical oxidation with the addition of H 2O 2. The BOD/COD ratio was greatly increased from 0.062 to 0.142, indicating the biodegradability of organic residues was improved. The photochemical oxidation for the fenton\|coagulation supernatant was most effective at pH 3\_4, with the addition of 800 mg/L of H 2O 2, and UV radiation time of 30 minutes. The final effluent contained only 148 mg/L of COD, 21 mg/L of BOD(biochemical oxygen demand) and 56 mg/L of TOC (total organic carbon).
基金supported by the Beijing Natural Science Foundation (8222040)Key Program of National Natural Science Foundation of China (52131004)+4 种基金Young Elite Scientists Sponsorship Program by China association for science and technology (CAST,YESS20220508)Young Elite Scientists Sponsorship Program by Beijing Association for Science and Technology (BAST,BYESS2023183)Innovation and Entrepreneurship Leading Team Project in Guangzhou (CYLJTD-201607)Key Research and Developmental Program of Shandong Province (2020CXGC011404)Cultivating Fund of Faculty of Environment and Life,Beijing University of Technology (PY202302).
文摘The sustainable recovery and utilization of sludge bioenergy within a circular economy context has drawn increasing attention,but there is currently a shortage of reliable technology.This study presents an innovative biotechnology based on free nitrous acid(FNA)to realize sustainable organics recovery from waste activated sludge(WAS)in-situ,driving efficient nitrogen removal from ammonia rich mature landfill leachate by integrating partial nitrification,fermentation,and denitrification process(PN/DN-F/DN).First,ammonia((1708.5±142.9)mg·L^(-1))in mature landfill leachate is oxidized to nitrite in the aerobic stage of a partial nitrification coupling denitrification(PN/DN)sequencing batch reactor(SBR),with nitrite accumulation ratio of 95.4%±2.5%.Then,intermediate effluent(NO_(2)^(-)-N=(1196.9±184.2)mg·L^(-1))of the PN/DN-SBR,along with concentrated WAS(volatile solids(VSs)=(15119.8±2484.2)mg·L^(-1)),is fed into an anoxic reactor for fermentation coupling denitrification process(F/DN).FNA,the protonated form of nitrite,degrades organics in the WAS to the soluble fraction by the biocidal effect,and the released organics are utilized by denitrifiers to drive NOx-reduction.An ultra-fast sludge reduction rate of 4.89 kg·m^(-3)·d^(-1) and nitrogen removal rate of 0.46 kg·m^(-3)·d^(-1) were realized in the process.Finally,F/DN-SBR effluent containing organics is refluxed to PN/DN-SBR for secondary denitrification in the post anoxic stage.After 175 d operation,an average of 19350.6 mg chemical oxygen demand organics were recovered per operational cycle,with 95.2%nitrogen removal and 53.4%sludge reduction.PN/DN-F/DN is of great significance for promoting a paradigm transformation from energy consumption to energy neutral,specifically,the total benefit in equivalent terms of energy was 291.8 kW·h·t^(-1) total solid.