Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe...Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.展开更多
The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation o...The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.展开更多
Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the impr...Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.展开更多
An experimental study of leakage current is presented in a semi-insulating(SI) Ga As photoconductive semiconductor switch(PCSS) with voltages up to 5.8 kV(average field is 19.3 kV/cm). The leakage current increa...An experimental study of leakage current is presented in a semi-insulating(SI) Ga As photoconductive semiconductor switch(PCSS) with voltages up to 5.8 kV(average field is 19.3 kV/cm). The leakage current increases nonlinearly with the bias voltage increasing from 1.2×10^-9 A to 3.6×10^-5A. Furthermore, the dark resistance, which is characterized as a function of electric field, does not monotonically decrease with the field but displays several distinct regimes. By eliminating the field-dependent drift velocity, the free-electron density n is extracted from the current, and then the critical field for each region of n(E) characteristic of PCSS is obtained. It must be the electric field that provides the free electron with sufficient energy to activate the carrier in the trapped state via multiple physical mechanisms, such as impurity ionization, fielddependent EL2 capture, and impact ionization of donor centers EL10 and EL2. The critical fields calculated from the activation energy of these physical processes accord well with the experimental results. Moreover, agreement between the fitting curve and experimental data of J(E), further confirms that the dark-state characteristics are related to these field-dependent processes. The effects of voltage on SI-Ga As PCSS may give us an insight into its physical mechanism.展开更多
Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test sho...Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test shows that the onstate resistance of lateral PCSS with an n+-AZO subcontact layer is 14.7% lower than that of PCSS without an n+-AZO subcontact layer. This occurs because a heavy-doped AZO thin film can improve Ohmic contact properties, reduce contact resistance, and alleviate Joule heating. Combined with the high transparance characteristic at 532 nm of AZO film, vertical structural PCSS devices are designed and their structural superiority is discussed. This paper provides a feasible route for fabricating high performance SiC PCSS by using conductive and transparent ZnO-based materials.展开更多
With its unique features, photoconductive semiconductor switch (PCSS) is generally recognized today as a promising power electronic device. However, a major limitation of PCSS is its surprisingly low voltage threshold...With its unique features, photoconductive semiconductor switch (PCSS) is generally recognized today as a promising power electronic device. However, a major limitation of PCSS is its surprisingly low voltage threshold of surface flashover (SF). In this paper, an experimental study of surface flashover of a back-triggered PCSS is presented. The PCSSs with electrode gap of 18 mm are fabricated from liquid encapsulated czochralski (LEC) semi-insulating gallium arsenide (SI-GaAs), and they are either un-coated, or partly coated, or en- tirely coated PCSSs with high-strength transparent insulation. The SF fields of the PCSSs are measured and discussed. According to the experimental results, the high-dielectric-strength coating is efficient in both reducing the gas desorption from semiconductor and increasing the SF field: a well-designed PCSS can resist a voltage up to 20 kV under the repetition frequency of 30 Hz. The physical mechanism of the PCSS SF is analyzed, and the conclusion is made that having a channel structure, the SF is the breakdown of the contaminated dielectric layer at the semiconductor-ambient dielectric interface. The non-uniform distribution of the surface field and the gas desorption due to thermal effects of semiconductor surface currents are key factors causing the SF field reduction.展开更多
基金National Key R&D Program of China(2021YFA0716304)Shanghai Science and Technology Programs(22511100300,23DZ2201500)。
文摘Photoconductive semiconductor switch(PCSS)can be applied in pulsed high power systems and microwave techniques.However,reducing the damage and increasing the lifetime of silicon carbide(SiC)PCSS are still faced severe challenges.In this study,PCSSs with various structures were prepared on 4-inch diameter,500μm thick high-purity semi-insulating 4H-SiC substrates and their on-state resistance and damage mechanisms were investigated.It was found that the PCSS of an Au/TiW/Ni electrode system annealed at 950℃had a minimum on-state resistance of 6.0Ωat 1 kV bias voltage with a 532 nm and 170 mJ pulsed laser by backside illumination single trigger.The backside illumination single trigger could reduce on-state resistance and alleviate the damage of PCSS compared to the frontside trigger when the diameter of the laser spot was larger than the channel length of PCSS.For the 200 s trigger test by a 10 Hz laser,the black branch-like ablation on Au/TiW/Ni PCSS was mainly caused by thermal stress owing to hot carriers.Replacing metal Ni with boron gallium co-doped zinc oxide(BGZO)thin films annealed at 400℃,black branch-like ablation was alleviated while concentric arc damage was obvious at the anode.The major causes of concentric arc are both pulsed laser diffraction and thermal effect.
文摘The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.
基金This work was supported by the National Science Foundation of China under grant No.51477177.
文摘Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.
基金supported by the National Natural Science Foundation of China(Grant No.31470822)the Advanced Research Foundation of China(Grant Nos.9140A05030114DZ02068,9140A07030514DZ02101,and 9140A07010715DZ02001)
文摘An experimental study of leakage current is presented in a semi-insulating(SI) Ga As photoconductive semiconductor switch(PCSS) with voltages up to 5.8 kV(average field is 19.3 kV/cm). The leakage current increases nonlinearly with the bias voltage increasing from 1.2×10^-9 A to 3.6×10^-5A. Furthermore, the dark resistance, which is characterized as a function of electric field, does not monotonically decrease with the field but displays several distinct regimes. By eliminating the field-dependent drift velocity, the free-electron density n is extracted from the current, and then the critical field for each region of n(E) characteristic of PCSS is obtained. It must be the electric field that provides the free electron with sufficient energy to activate the carrier in the trapped state via multiple physical mechanisms, such as impurity ionization, fielddependent EL2 capture, and impact ionization of donor centers EL10 and EL2. The critical fields calculated from the activation energy of these physical processes accord well with the experimental results. Moreover, agreement between the fitting curve and experimental data of J(E), further confirms that the dark-state characteristics are related to these field-dependent processes. The effects of voltage on SI-Ga As PCSS may give us an insight into its physical mechanism.
基金Project supported by the Innovation Program of the Shanghai Institute of Ceramics(Grant No.Y39ZC1110G)the Innovation Program of the Chinese Academy of Sciences(Grant No.KJCX2-EW-W10)+3 种基金the Industry–Academic Joint Technological Innovations Fund Project of Jiangsu Province,China(Grant No.BY2011119)the Natural Science Foundation of Shanghai(Grant No.14ZR1419000)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61404146)the National High-tech R&D Program of China(Grant Nos.2013AA031603 and 2014AA032602)
文摘Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test shows that the onstate resistance of lateral PCSS with an n+-AZO subcontact layer is 14.7% lower than that of PCSS without an n+-AZO subcontact layer. This occurs because a heavy-doped AZO thin film can improve Ohmic contact properties, reduce contact resistance, and alleviate Joule heating. Combined with the high transparance characteristic at 532 nm of AZO film, vertical structural PCSS devices are designed and their structural superiority is discussed. This paper provides a feasible route for fabricating high performance SiC PCSS by using conductive and transparent ZnO-based materials.
基金Project supported by National Natural Science Foundation of China (50837005, 5110 7099), Foundation of the State Key Laboratory of Electrical Insulation for Power Equip- ment (EIPE09203).
文摘With its unique features, photoconductive semiconductor switch (PCSS) is generally recognized today as a promising power electronic device. However, a major limitation of PCSS is its surprisingly low voltage threshold of surface flashover (SF). In this paper, an experimental study of surface flashover of a back-triggered PCSS is presented. The PCSSs with electrode gap of 18 mm are fabricated from liquid encapsulated czochralski (LEC) semi-insulating gallium arsenide (SI-GaAs), and they are either un-coated, or partly coated, or en- tirely coated PCSSs with high-strength transparent insulation. The SF fields of the PCSSs are measured and discussed. According to the experimental results, the high-dielectric-strength coating is efficient in both reducing the gas desorption from semiconductor and increasing the SF field: a well-designed PCSS can resist a voltage up to 20 kV under the repetition frequency of 30 Hz. The physical mechanism of the PCSS SF is analyzed, and the conclusion is made that having a channel structure, the SF is the breakdown of the contaminated dielectric layer at the semiconductor-ambient dielectric interface. The non-uniform distribution of the surface field and the gas desorption due to thermal effects of semiconductor surface currents are key factors causing the SF field reduction.