The technique of terahertz pulses generated from the photoconductive switches has been applied in the ultrafast electrical pulse metrology recently.A lumped-element theoretical model is established to describe the per...The technique of terahertz pulses generated from the photoconductive switches has been applied in the ultrafast electrical pulse metrology recently.A lumped-element theoretical model is established to describe the performance of the LT-GaAs ultrafast photoconductive switch used in the ultrafast pulse standard.The carrier transport processes of the photoexcited semiconductor,the attenuation and dispersion during terahertz pulse propagating are considered in the theoretical model.According to the experimental parameters,the waveforms of the generated terahertz pulses are calculated under optical excitations with different wavelengths of 840 nm and 450 nm,respectively.And comparisons between the theoretical results and the experimental results are carried out.展开更多
The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pul...The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.展开更多
A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge ...A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.展开更多
Experiments of a GaAs ultra\|fast Photo\|Conductive Semiconductor Switch (PCSS) are reported. Both the linear and nonlinear modes were observed when triggered by the μJ nano\|second laser. The peak current could...Experiments of a GaAs ultra\|fast Photo\|Conductive Semiconductor Switch (PCSS) are reported. Both the linear and nonlinear modes were observed when triggered by the μJ nano\|second laser. The peak current could be as high as 560A. The rise time of the current pulse responses is less than 200ps when triggered with 76MHz femto\|second laser.展开更多
The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation o...The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.展开更多
Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the impr...Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.展开更多
Given is the experiment results in which the laser pulses of 1 046 nm and 532 nm are used to trigger the semi-insulation GaAs photoconductive semiconductor switch(PCSS) with an electrode distance of 4 mm. And made is ...Given is the experiment results in which the laser pulses of 1 046 nm and 532 nm are used to trigger the semi-insulation GaAs photoconductive semiconductor switch(PCSS) with an electrode distance of 4 mm. And made is an analysis of the switchs photovoltaic response characteristics under the high gain mode when the biased field is bigger than the Geng effect field. Also a theory is presented that the main reason for the photovoltaic pulse response delay is the transmission of charge domain, caused by the presence of EL2 energy level in the chip material. Finally, the transmission time of charge domain is calculated and a result that inosculates with the experiment is attained.展开更多
With its unique features, photoconductive semiconductor switch (PCSS) is generally recognized today as a promising power electronic device. However, a major limitation of PCSS is its surprisingly low voltage threshold...With its unique features, photoconductive semiconductor switch (PCSS) is generally recognized today as a promising power electronic device. However, a major limitation of PCSS is its surprisingly low voltage threshold of surface flashover (SF). In this paper, an experimental study of surface flashover of a back-triggered PCSS is presented. The PCSSs with electrode gap of 18 mm are fabricated from liquid encapsulated czochralski (LEC) semi-insulating gallium arsenide (SI-GaAs), and they are either un-coated, or partly coated, or en- tirely coated PCSSs with high-strength transparent insulation. The SF fields of the PCSSs are measured and discussed. According to the experimental results, the high-dielectric-strength coating is efficient in both reducing the gas desorption from semiconductor and increasing the SF field: a well-designed PCSS can resist a voltage up to 20 kV under the repetition frequency of 30 Hz. The physical mechanism of the PCSS SF is analyzed, and the conclusion is made that having a channel structure, the SF is the breakdown of the contaminated dielectric layer at the semiconductor-ambient dielectric interface. The non-uniform distribution of the surface field and the gas desorption due to thermal effects of semiconductor surface currents are key factors causing the SF field reduction.展开更多
We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stab...We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.展开更多
Photoconductive semiconductor switches (PCSSs) are widely used in high power ultra-wideband source applications and precise synchronization control due to their high power low-jitter high-repetition-frequency. In th...Photoconductive semiconductor switches (PCSSs) are widely used in high power ultra-wideband source applications and precise synchronization control due to their high power low-jitter high-repetition-frequency. In this letter, a 14-mm gap semi-insulating GaAs PCSS biased under 20 kV is triggered by a 1064-nm laser with a repetition frequency of 30 Hz. Although the trigger condition is greater than the threshold of the lock-on effect, the high gain mode is not observed. The results indicate that the high gain mode of the PCSS is quenched by decreasing the remnant voltage of pulsed energy storage capacitor.展开更多
文摘The technique of terahertz pulses generated from the photoconductive switches has been applied in the ultrafast electrical pulse metrology recently.A lumped-element theoretical model is established to describe the performance of the LT-GaAs ultrafast photoconductive switch used in the ultrafast pulse standard.The carrier transport processes of the photoexcited semiconductor,the attenuation and dispersion during terahertz pulse propagating are considered in the theoretical model.According to the experimental parameters,the waveforms of the generated terahertz pulses are calculated under optical excitations with different wavelengths of 840 nm and 450 nm,respectively.And comparisons between the theoretical results and the experimental results are carried out.
文摘The experiment results of ultrawide band electromagnetic radiation with DC biased GaAs photoconductive semiconductor switch combining double ridge horn antenna triggered by high repeat frequency femto-second laser pulse are reported.The GaAs switches are insulated by solid multi-layer transparent dielectrics and the distance of two electrodes is 3mm.The electrode material of the switch is ohmic contact through alloy technics with definite proportion of Au/Ge/Ni.This switch and double ridge horn antenna are integrated and the receive antenna is connected with the test instrument.From receiving antenna,ultra fast electrical pulse of 200ps rise time and 500ps pulse width is obtained,the repetition rate of the pulse is about 82MHz and the frequency spectrum is in the range of 4.7MHz~14GHz.The radiation characteristic of the ultrafast electrical pulse is analyzed.
文摘A mode for the periodicity and weakening surge in semi-insulating GaAs photoconductive semiconductor switches is proposed based on the transferred-electron effect. It is shown that the periodicity and weakening surge is caused by the interaction between the self-excitation of the resonant circuit and transferred electron oscillation of the switch. The bias electric field (larger than Gunn threshold) across the switch is modulated by the AC elec-tric field,when the instantaneous bias electric field E is swinging below Gunn electric field threshold ET but grea-ter than the sustaining field Es (the minimum electric field required to support the domain) at the time of the do-main reaching the anode, and then the delayed-dipole domain mode of switch is obtained. It is the photon-activated carriers that satisfy the requirement of charge domain formation on carrier concentration and device length prod-uct of 10^12 cm^-2,and the semi-insulating GaAs photoconductive semiconductor switch is essentially a type of pho-ton-activated charge domain device.
文摘Experiments of a GaAs ultra\|fast Photo\|Conductive Semiconductor Switch (PCSS) are reported. Both the linear and nonlinear modes were observed when triggered by the μJ nano\|second laser. The peak current could be as high as 560A. The rise time of the current pulse responses is less than 200ps when triggered with 76MHz femto\|second laser.
文摘The transient resistance,voltage,and power of a nonlinear GaAs photoconductive semiconductor switch (PCSS) are presented by the finite difference formula to deal with the experiment data, based on the conversation of energy in the switch circuit. This method resolves the problem of directly measuring the transient characteristics of PCSS in nonlinear mode. The curve of transient voltage shows that the average electric field of PCSS in the lock-on period is always higher than the Gunn threshold,and increases monotonically. By comparing the transient power curves of the PCSS and the electrical source,it is demonstrated directly that the power shortage leads to the PCSS from the lock-on state into the selfturnoff state,so a controllable turnoff of the PCSS in lock-on by changing the distribution of the circuit power is predicted.
基金This work was supported by the National Science Foundation of China under grant No.51477177.
文摘Synchronization for multiple-pulse at nanosecond range shows a great value on the power multiplication and synchronous electric fieldsapplications. Nanosecond or sub-ns jitter synchronization is essential for the improved working efficiency of the large amounts of pulse modulesand accurate requirements for the power coherent combining applications. This paper presents a trigger generator based on a laser diodetriggered GaAs photoconductive semiconductor switch (PCSS) with low jitter and compact size characteristics. It avoids the high currentsthat are harmful to high-gain mode PCSSs. In the trigger circuit, a 200 pF capacitor is charged by a microsecond-scale 18 kV pulse and thendischarged via the high-gain mode GaAs PCSS to trigger the high-power trigatron switch. When triggered by the ~10 ns pulse generated by thePCSS, the DC-charged trigatron can operate in the 20e35 kV range with 10 ns rise time and 1 ns delay-time jitter.
文摘Given is the experiment results in which the laser pulses of 1 046 nm and 532 nm are used to trigger the semi-insulation GaAs photoconductive semiconductor switch(PCSS) with an electrode distance of 4 mm. And made is an analysis of the switchs photovoltaic response characteristics under the high gain mode when the biased field is bigger than the Geng effect field. Also a theory is presented that the main reason for the photovoltaic pulse response delay is the transmission of charge domain, caused by the presence of EL2 energy level in the chip material. Finally, the transmission time of charge domain is calculated and a result that inosculates with the experiment is attained.
基金Project supported by National Natural Science Foundation of China (50837005, 5110 7099), Foundation of the State Key Laboratory of Electrical Insulation for Power Equip- ment (EIPE09203).
文摘With its unique features, photoconductive semiconductor switch (PCSS) is generally recognized today as a promising power electronic device. However, a major limitation of PCSS is its surprisingly low voltage threshold of surface flashover (SF). In this paper, an experimental study of surface flashover of a back-triggered PCSS is presented. The PCSSs with electrode gap of 18 mm are fabricated from liquid encapsulated czochralski (LEC) semi-insulating gallium arsenide (SI-GaAs), and they are either un-coated, or partly coated, or en- tirely coated PCSSs with high-strength transparent insulation. The SF fields of the PCSSs are measured and discussed. According to the experimental results, the high-dielectric-strength coating is efficient in both reducing the gas desorption from semiconductor and increasing the SF field: a well-designed PCSS can resist a voltage up to 20 kV under the repetition frequency of 30 Hz. The physical mechanism of the PCSS SF is analyzed, and the conclusion is made that having a channel structure, the SF is the breakdown of the contaminated dielectric layer at the semiconductor-ambient dielectric interface. The non-uniform distribution of the surface field and the gas desorption due to thermal effects of semiconductor surface currents are key factors causing the SF field reduction.
基金Project supported by the National Basic Research Program of China (Grant No. 2007CB925002)the National High Technology Research and Development Program of China (Grant No. 2008AA031401)and Chinese Academy of Sciences
文摘We report that fully transparent resistive random access memory (TRRAM) devices based on ITO/TiO2/ITO sandwich structure, which are prepared by the method of RF magnetron sputtering, exhibit excellent switching stability. In the visible region (400 800 nm in wavelength) the TRRAM device has a transmittance of more than 80%. The fabricated TRRAM device shows a bipolar resistance switching behaviour at low voltage, while the retention test and rewrite cycles of more than 300,000 indicate the enhancement of switching capability. The mechanism of resistance switching is further explained by the forming and rupture processes of the filament in the TiO2 layer with the help of more oxygen vacancies which are provided by the transparent ITO electrodes.
基金supported by the National Natural Science Foundation of China (Nos. 50837005 and 10876026)the Foundation of the State Key Laboratory of Electrical Insulation for Power Equipment (No. EIPE09203)the National Basic Research Program of China (No.2007CB310406)
文摘Photoconductive semiconductor switches (PCSSs) are widely used in high power ultra-wideband source applications and precise synchronization control due to their high power low-jitter high-repetition-frequency. In this letter, a 14-mm gap semi-insulating GaAs PCSS biased under 20 kV is triggered by a 1064-nm laser with a repetition frequency of 30 Hz. Although the trigger condition is greater than the threshold of the lock-on effect, the high gain mode is not observed. The results indicate that the high gain mode of the PCSS is quenched by decreasing the remnant voltage of pulsed energy storage capacitor.