We measure the intensity of fluorescence spectral lines of Cs atoms in an electrodeless discharge lamp from visible light to the near-infrared region of 400-100Ohm. To build an excited state Faraday anomalous dispersi...We measure the intensity of fluorescence spectral lines of Cs atoms in an electrodeless discharge lamp from visible light to the near-infrared region of 400-100Ohm. To build an excited state Faraday anomalous dispersion optical filter, the population ratios between the excited states are calculated by rate equations and the spontaneous transition probabilities. The electrodeless discharge lamp with populations in the excited states can be used to realize the frequency stabilization reference for lasers at multiwavelength and the excited state Faraday anomalous dispersion optical filter for submarine communication applications in blue-green wavelengths to simplify the system.展开更多
Full-dimensional adiabatic potential energy surfaces of the electronic ground state X and nine excited states A,I,B,C,D,D',D'',E' and F of H_(2)O molecule are developed at the level of internally contr...Full-dimensional adiabatic potential energy surfaces of the electronic ground state X and nine excited states A,I,B,C,D,D',D'',E' and F of H_(2)O molecule are developed at the level of internally contracted multireference configuration interaction with the Davidson correction.The potential energy surfaces are fitted by using Gaussian process regression combining permutation invariant polynomials.With a large selected active space and extra diffuse basis set to describe these Rydberg states,the calculated vertical excited energies and equilibrium geometries are in good agreement with the previous theoretical and experimental values.Compared with the well-investigated photodissociation of the first three low-lying states,both theoretical and experimental studies on higher states are still limited.In this work,we focus on all the three channels of the highly excited state,which are directly involved in the vacuum ultraviolet photodissociation of water.In particular,some conical intersections of D-E',E'-F,A-I and I-C states are clearly illustrated for the first time based on the newly developed potential energy surfaces(PESs).The nonadiabatic dissociation pathways for these excited states are discussed in detail,which may shed light on the photodissociation mechanisms for these highly excited states.展开更多
Population ratios between excited states are measured to build the excited state Faraday anomalous dispersion optical filter(ESFADOF). We calculate these values between the excited states according to the spontaneous ...Population ratios between excited states are measured to build the excited state Faraday anomalous dispersion optical filter(ESFADOF). We calculate these values between the excited states according to the spontaneous transition probabilities using rate equations and the measured intensities of fluorescence spectral lines of He atoms in an electrodeless discharge lamp in the visible spectral region from 350 to 730 nm. The electrodeless discharge lamp with populations in excited states can be used to realize the frequency stabilization reference of the laser frequency standard. This lamp can also build ESFADOFs for submarine communication application in the blue-green wavelength to simplify the system without the use of a pump laser.展开更多
In this work,we used time-sliced ion velocity imaging to study the photodissociation dynamics of Mg O at 193 nm.Three dissociation pathways are found through the speed and angular distributions of magnesium.One pathwa...In this work,we used time-sliced ion velocity imaging to study the photodissociation dynamics of Mg O at 193 nm.Three dissociation pathways are found through the speed and angular distributions of magnesium.One pathway is the one-photon excitation of Mg O(X^(1)∑^(+))to Mg O(G^(1)Π)followed by spin-orbit coupling between the G^(1)Π,3^(3)Πand ^(1^(5))Πstates,and finally dissociated to the Mg(^(3)Pu)+O(^(3)Pg)along the 1^(5)Πsurface.The other two pathways are one-photon absorption of Mg O(A^(1)Π)state to Mg O(G^(1)Π)and Mg O(4^(1)Π)state to dissociate into Mg(^(3)P_(u))+O(^(3)P_(g))and Mg(^(1)S_(g))+O(^(1)S_(g)),respectively.The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states.The total kinetic energy analysis gives D0(Mg-O)=21645±50 cm^(-1).展开更多
The ultraviolet (UV) photodissociation of jet-cooled 1-pentyl radical is investigated in the wavelength region of 236-254 nm using the high-n Rydberg-atom time-of-flight (HRTOF) technique. The H-atom photofragment...The ultraviolet (UV) photodissociation of jet-cooled 1-pentyl radical is investigated in the wavelength region of 236-254 nm using the high-n Rydberg-atom time-of-flight (HRTOF) technique. The H-atom photofragment yield spectrum of the 1-pentyl radical shows a broad UV absorption feature peaking near 245 nm, similar to the 2pz→3s absorption bands of ethyl and n-propyl. The center-of-mass translational energy distribution, P(ET), of the H+CsH10 product channel is bimodal, with a slow peak at -5 kcal/mol and a fast peak at -50 kcal/mol. The fraction of the average translational energy release in the total available energy, (fT), is 0.30, with those of the slow and fast components being 0.13 and 0.58, respectively. The slow component has an isotropic product angular distribution, while the fast component is anisotropic with an anisotropy parameter -0.4. The bimodal translational energy and angular distributions of the H+C5H10 products indicate two H-atom elimination channels in the photodissociation of 1-pentyl: (i) a direct, prompt dissociation from the electronic excited state and/or the repulsive part of the ground electronic state potential energy surface; and (ii) a unimolecular dissociation of internally hot radical in the ground electronic state after internal conversion from the electronic excited state.展开更多
Phototheranostics is an emerging field in synergistic antitumor therapy in which irradiation and sensitizers are combined to produce reactive oxygen species(ROS),bio-images,and high temperatures.All of these are arriv...Phototheranostics is an emerging field in synergistic antitumor therapy in which irradiation and sensitizers are combined to produce reactive oxygen species(ROS),bio-images,and high temperatures.All of these are arrived from the energy of sensitizers,which located in excited single state(S_(1)).Undeniably,the decentralization of the S_(1)population indirectly decreases the effect of each individual treatment.In this study,a strategy was proposed for enhancing the S_(1)population,and a sensitizer with mitochondrial targeting property,1,4-indolyl iodinated pyrrolo[3,2-b]pyrrole derivative(2I-TPIS),was assembled into adenosine triphosphate(ATP)-responsive nanoparticles(DPA-2I NPs)to achieve dual responses to irradiation and ultrasonication(US)for application to photo-sonodynamic therapy(PSDT).Compared with monotherapies,2I-TPIS generated more ROS in PSDT,inducing mitochondrial autophagy and apoptosis,which in turn triggered immunogenic cell death(ICD).Subsequently,DPA-2I NPs were constructed and self-assembled with the chemotherapeutic agents DPA-Cd and 2I-TPIS to achieve a triple synergistic strategy involving chemotherapy(CT)and PSDT.DPA-2I NPs exhibited absolute sensitization,intra-tumoral overexpression of ATP,and disassembly.Importantly,the biosafety and potent antitumor efficiency of the DPA-2I NP-based“PSDT+CT”therapy were revealed using a 4T1 tumor model.The study results provide insights into the design of sensitizers possessing a sufficient S_(1)population and a highly efficient tumor ablation capacity derived from molecular structural modulation,further enabling triple synergistic antitumor therapies,and expanding the clinical application of sensitizers.展开更多
Ⅰ. INTRODUCTIONLaser-excited atomic fluorescence spectrometry in hollow cathode discharge(HCD) has been widely used in the research field of laser spectroscopy in recent years. Similar to traditional method, informat...Ⅰ. INTRODUCTIONLaser-excited atomic fluorescence spectrometry in hollow cathode discharge(HCD) has been widely used in the research field of laser spectroscopy in recent years. Similar to traditional method, information obtained in the researches was direct line nonresonance fluorescence arising from the resonantly transitional upper level. Attention has not been sufficiently paid to the phenomenon of population change on the resonantly transitional lower level due to laser irradiation of plasma in HCD, so展开更多
In this work,high-fidelity full-dimensional potential energy surfaces(PESs)of the ground(X^(2)A′)and first doublet excited(A^(2)A″)electronic states of HCO were constructed using neural network method.In total,4624 ...In this work,high-fidelity full-dimensional potential energy surfaces(PESs)of the ground(X^(2)A′)and first doublet excited(A^(2)A″)electronic states of HCO were constructed using neural network method.In total,4624 high-level ab initio points have been used which were calculated at Davidson corrected internally contracted MRCI-F12 level of theory with a quite large basis set(ACV5Z)without any scaling scheme.Compared with the results obtained from the scaled PESs of Ndenguéet al.,the absorption spectrum based on our PESs has slightly larger intensity,and the peak positions are shifted to smaller energy for dozens of wavenumbers.It is indicated that the scaling of potential energy may make some unpredictable difference on the dynamical results.However,the resonance energies based on those scaled PESs are slightly closer to the current available experimental values than ours.Nevertheless,the unscaled high-level PESs developed in this work might provide a platform for further experimental and theoretical photodissociation and collisional dynamic studies for HCO system.展开更多
The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited st...The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited states, the vertical (Tv) and adiabatic (T0) excitation energies of the lower states, and the dissociation reaction pathways on the potential energy surfaces (PES) of SI, TI and T2 states. The calculated results clearly elucidated the photodissociation mechanism of BzCl, and indicated that the photodissociation on the PES of T1 state is the most favorable.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
Two-photon dissociation dynamics of the OH radical is studied using the high-n Rydberg atom time-of-flight(HRTOF) technique. The H(2 S)+O(1 D) and H(2 S)+O(1 S) product channels are observed in the dissociation of the...Two-photon dissociation dynamics of the OH radical is studied using the high-n Rydberg atom time-of-flight(HRTOF) technique. The H(2 S)+O(1 D) and H(2 S)+O(1 S) product channels are observed in the dissociation of the OH radical on the 22Π and B2Σ+repulsive states, respectively, from sequential two-photon excitation via the A2Σ+(v′=2, J′=0.5-2.5)state. Both H+O product channels have anisotropic angular distributions, with β=-0.97 for H(2 S)+O(1 D) and 1.97 for H(2 S)+O(1 S). The anisotropic angular distributions are consistent with a mechanism of OH direct dissociation on the repulsive potential energy curves(PECs) leading to the H+O products. The OH bond dissociation energy D0(O-H) is determined to be 35580±15 cm-1.展开更多
The 304 nm photodissociation of the C-H symmetric stretch excited CH3I[v1=1,v2=0](v1 denotes the C-H symmetric stretch mode,and v2 denotes the umbrella mode)is studied with our simple photofragment translational spect...The 304 nm photodissociation of the C-H symmetric stretch excited CH3I[v1=1,v2=0](v1 denotes the C-H symmetric stretch mode,and v2 denotes the umbrella mode)is studied with our simple photofragment translational spectrometer.An IR laser is used to excite the ground state CH3I[0,0]to the C-H symmetric stretch excited CH3I[1,0].With IR laser OFF and ON,the fractions of photofragments CH3(ν1,ν2)from the 304 nm photodissociation of CH3I[1,0]have been determined through the photofragment translational spectra(PTS)from measuring I and I*and also through the PTS from measuring CH3(0,0)(1,0)(0,1)and(1,1).The experimental results show that the C-H symmetric stretch vibration(v1=1)in parent molecules is about 66%retained in the photofragments in the I channel,but only 24%in the I*channel.The populations of photofragments CH3(0,2)and(0,3)are higher than CH3(0,0)and(0,1),showing strong inverted population both in I and I*channels.展开更多
Polarization upconversion luminescence(PUCL)of lanthanide ions(Ln^(3+))has been widely used in single particle tracking,microfluidics detection,three-dimensional displays,and so on.However,no effective strategy has be...Polarization upconversion luminescence(PUCL)of lanthanide ions(Ln^(3+))has been widely used in single particle tracking,microfluidics detection,three-dimensional displays,and so on.However,no effective strategy has been developed for modulating PUCL.Here we report a strategy to regulate PUCL in Ho^(3+)-doped NaYF4single nanorods based on the number of upconversion photons.By constructing a multiphoton upconversion system for Ho^(3+),we regulate the degree of polarization(DOP)of PUCL from 0.590 for two-photon luminescence to 0.929 for three-photon upconversion luminescence(UCL).Furthermore,our strategy is verified from cross-relaxation between Ho^(3+)and Yb^(3+),excitation wavelength,excitation power density,and local site symmetry.And this regulation strategy of PUCL has also been achieved in Tm^(3+),with the DOP ranging from 0.233 for two-photon luminescence to 0.925 for four-photon UCL Besides,multi-dimensional anti-counterfeiting display has been explored with PUCL.This work provides an effective strategy for regulating PUCL and also provides more opportunities for the development of polarization display optical encoding,anti-counterfeiting,and integrated optical devices.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11074011 and 91436210
文摘We measure the intensity of fluorescence spectral lines of Cs atoms in an electrodeless discharge lamp from visible light to the near-infrared region of 400-100Ohm. To build an excited state Faraday anomalous dispersion optical filter, the population ratios between the excited states are calculated by rate equations and the spontaneous transition probabilities. The electrodeless discharge lamp with populations in the excited states can be used to realize the frequency stabilization reference for lasers at multiwavelength and the excited state Faraday anomalous dispersion optical filter for submarine communication applications in blue-green wavelengths to simplify the system.
基金supported by the National Natural Science Foundation of China(No.12047532,No.21733006,No.22073042,and No.22122302)。
文摘Full-dimensional adiabatic potential energy surfaces of the electronic ground state X and nine excited states A,I,B,C,D,D',D'',E' and F of H_(2)O molecule are developed at the level of internally contracted multireference configuration interaction with the Davidson correction.The potential energy surfaces are fitted by using Gaussian process regression combining permutation invariant polynomials.With a large selected active space and extra diffuse basis set to describe these Rydberg states,the calculated vertical excited energies and equilibrium geometries are in good agreement with the previous theoretical and experimental values.Compared with the well-investigated photodissociation of the first three low-lying states,both theoretical and experimental studies on higher states are still limited.In this work,we focus on all the three channels of the highly excited state,which are directly involved in the vacuum ultraviolet photodissociation of water.In particular,some conical intersections of D-E',E'-F,A-I and I-C states are clearly illustrated for the first time based on the newly developed potential energy surfaces(PESs).The nonadiabatic dissociation pathways for these excited states are discussed in detail,which may shed light on the photodissociation mechanisms for these highly excited states.
基金supported by the National Natural Science Foundation of China under Grant Nos.10874009 and 11074011
文摘Population ratios between excited states are measured to build the excited state Faraday anomalous dispersion optical filter(ESFADOF). We calculate these values between the excited states according to the spontaneous transition probabilities using rate equations and the measured intensities of fluorescence spectral lines of He atoms in an electrodeless discharge lamp in the visible spectral region from 350 to 730 nm. The electrodeless discharge lamp with populations in excited states can be used to realize the frequency stabilization reference of the laser frequency standard. This lamp can also build ESFADOFs for submarine communication application in the blue-green wavelength to simplify the system without the use of a pump laser.
基金supported by the National Natural Science Foundation of China(No.22073019 and No.21673047)the Shanghai Key Laboratory Foundation of Molecular Catalysis and Innovative Materialsthe Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning。
文摘In this work,we used time-sliced ion velocity imaging to study the photodissociation dynamics of Mg O at 193 nm.Three dissociation pathways are found through the speed and angular distributions of magnesium.One pathway is the one-photon excitation of Mg O(X^(1)∑^(+))to Mg O(G^(1)Π)followed by spin-orbit coupling between the G^(1)Π,3^(3)Πand ^(1^(5))Πstates,and finally dissociated to the Mg(^(3)Pu)+O(^(3)Pg)along the 1^(5)Πsurface.The other two pathways are one-photon absorption of Mg O(A^(1)Π)state to Mg O(G^(1)Π)and Mg O(4^(1)Π)state to dissociate into Mg(^(3)P_(u))+O(^(3)P_(g))and Mg(^(1)S_(g))+O(^(1)S_(g)),respectively.The anisotropy parameters of the dissociation pathways are related to the lifetime of the vibrational energy levels and the coupling of rotational and vibronic spin-orbit states.The total kinetic energy analysis gives D0(Mg-O)=21645±50 cm^(-1).
基金supported by the US National Science Foundation(No.CHE-1566636)
文摘The ultraviolet (UV) photodissociation of jet-cooled 1-pentyl radical is investigated in the wavelength region of 236-254 nm using the high-n Rydberg-atom time-of-flight (HRTOF) technique. The H-atom photofragment yield spectrum of the 1-pentyl radical shows a broad UV absorption feature peaking near 245 nm, similar to the 2pz→3s absorption bands of ethyl and n-propyl. The center-of-mass translational energy distribution, P(ET), of the H+CsH10 product channel is bimodal, with a slow peak at -5 kcal/mol and a fast peak at -50 kcal/mol. The fraction of the average translational energy release in the total available energy, (fT), is 0.30, with those of the slow and fast components being 0.13 and 0.58, respectively. The slow component has an isotropic product angular distribution, while the fast component is anisotropic with an anisotropy parameter -0.4. The bimodal translational energy and angular distributions of the H+C5H10 products indicate two H-atom elimination channels in the photodissociation of 1-pentyl: (i) a direct, prompt dissociation from the electronic excited state and/or the repulsive part of the ground electronic state potential energy surface; and (ii) a unimolecular dissociation of internally hot radical in the ground electronic state after internal conversion from the electronic excited state.
基金the financial support from the National Natural Science Foundation of China(Nos.U23A2089,22205159,and 22103055)Natural Science Foundation of Tianjin(No.21JCQNJC01450)Science and Technology Plans of Tianjin(Nos.22ZYJDSS00070 and 21ZYJDJC00050).
文摘Phototheranostics is an emerging field in synergistic antitumor therapy in which irradiation and sensitizers are combined to produce reactive oxygen species(ROS),bio-images,and high temperatures.All of these are arrived from the energy of sensitizers,which located in excited single state(S_(1)).Undeniably,the decentralization of the S_(1)population indirectly decreases the effect of each individual treatment.In this study,a strategy was proposed for enhancing the S_(1)population,and a sensitizer with mitochondrial targeting property,1,4-indolyl iodinated pyrrolo[3,2-b]pyrrole derivative(2I-TPIS),was assembled into adenosine triphosphate(ATP)-responsive nanoparticles(DPA-2I NPs)to achieve dual responses to irradiation and ultrasonication(US)for application to photo-sonodynamic therapy(PSDT).Compared with monotherapies,2I-TPIS generated more ROS in PSDT,inducing mitochondrial autophagy and apoptosis,which in turn triggered immunogenic cell death(ICD).Subsequently,DPA-2I NPs were constructed and self-assembled with the chemotherapeutic agents DPA-Cd and 2I-TPIS to achieve a triple synergistic strategy involving chemotherapy(CT)and PSDT.DPA-2I NPs exhibited absolute sensitization,intra-tumoral overexpression of ATP,and disassembly.Importantly,the biosafety and potent antitumor efficiency of the DPA-2I NP-based“PSDT+CT”therapy were revealed using a 4T1 tumor model.The study results provide insights into the design of sensitizers possessing a sufficient S_(1)population and a highly efficient tumor ablation capacity derived from molecular structural modulation,further enabling triple synergistic antitumor therapies,and expanding the clinical application of sensitizers.
文摘Ⅰ. INTRODUCTIONLaser-excited atomic fluorescence spectrometry in hollow cathode discharge(HCD) has been widely used in the research field of laser spectroscopy in recent years. Similar to traditional method, information obtained in the researches was direct line nonresonance fluorescence arising from the resonantly transitional upper level. Attention has not been sufficiently paid to the phenomenon of population change on the resonantly transitional lower level due to laser irradiation of plasma in HCD, so
基金supported by the National Natural Science Foundation of China(Nos.22073042,22122302,U1932147 to Xixi Hu,and No.21733006 to Daiqian Xie)the Fundamental Research Funds for the central universities(No.14380020)。
文摘In this work,high-fidelity full-dimensional potential energy surfaces(PESs)of the ground(X^(2)A′)and first doublet excited(A^(2)A″)electronic states of HCO were constructed using neural network method.In total,4624 high-level ab initio points have been used which were calculated at Davidson corrected internally contracted MRCI-F12 level of theory with a quite large basis set(ACV5Z)without any scaling scheme.Compared with the results obtained from the scaled PESs of Ndenguéet al.,the absorption spectrum based on our PESs has slightly larger intensity,and the peak positions are shifted to smaller energy for dozens of wavenumbers.It is indicated that the scaling of potential energy may make some unpredictable difference on the dynamical results.However,the resonance energies based on those scaled PESs are slightly closer to the current available experimental values than ours.Nevertheless,the unscaled high-level PESs developed in this work might provide a platform for further experimental and theoretical photodissociation and collisional dynamic studies for HCO system.
基金Project supported by the National Natural Science Foundation of China (Nos. 20472011, 20673012) and the Major State Basic Research Development Programs (Nos. 2004CB719903, 2002CB613406).
文摘The photodissociation mechanism of benzyl chloride (BzCl) under 248 nm has been investigated by the complete active space SCF (CASSCF) method by calculating the geometries of the ground (S0) and lower excited states, the vertical (Tv) and adiabatic (T0) excitation energies of the lower states, and the dissociation reaction pathways on the potential energy surfaces (PES) of SI, TI and T2 states. The calculated results clearly elucidated the photodissociation mechanism of BzCl, and indicated that the photodissociation on the PES of T1 state is the most favorable.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
基金This work was supported by the Innovation Program for Quantum Science and Technology(2021ZD0303305 to Daiqian Xie)by the National Natural Science Foundation of China(No.22073042 and No.22122302 to Xixi Hu,No.22233003 and No.22241302 to Daiqian Xie)。
基金supported by the US National Science Foundation (grant number CHE-1566636)UC MEXUS-CONACYT Collaborative Grant (CN-1668)DGAPA-UNAM for support through Project PAPIIT IN-115916.
文摘Two-photon dissociation dynamics of the OH radical is studied using the high-n Rydberg atom time-of-flight(HRTOF) technique. The H(2 S)+O(1 D) and H(2 S)+O(1 S) product channels are observed in the dissociation of the OH radical on the 22Π and B2Σ+repulsive states, respectively, from sequential two-photon excitation via the A2Σ+(v′=2, J′=0.5-2.5)state. Both H+O product channels have anisotropic angular distributions, with β=-0.97 for H(2 S)+O(1 D) and 1.97 for H(2 S)+O(1 S). The anisotropic angular distributions are consistent with a mechanism of OH direct dissociation on the repulsive potential energy curves(PECs) leading to the H+O products. The OH bond dissociation energy D0(O-H) is determined to be 35580±15 cm-1.
基金supported by the National Natural Science Foundation of China(21203207 and 21173236)
文摘The 304 nm photodissociation of the C-H symmetric stretch excited CH3I[v1=1,v2=0](v1 denotes the C-H symmetric stretch mode,and v2 denotes the umbrella mode)is studied with our simple photofragment translational spectrometer.An IR laser is used to excite the ground state CH3I[0,0]to the C-H symmetric stretch excited CH3I[1,0].With IR laser OFF and ON,the fractions of photofragments CH3(ν1,ν2)from the 304 nm photodissociation of CH3I[1,0]have been determined through the photofragment translational spectra(PTS)from measuring I and I*and also through the PTS from measuring CH3(0,0)(1,0)(0,1)and(1,1).The experimental results show that the C-H symmetric stretch vibration(v1=1)in parent molecules is about 66%retained in the photofragments in the I channel,but only 24%in the I*channel.The populations of photofragments CH3(0,2)and(0,3)are higher than CH3(0,0)and(0,1),showing strong inverted population both in I and I*channels.
基金financially supported by the National Natural Science Foundation of China(Nos.11704081,52125205,52250398,U20A20166,52192614 and 52003101)Guangxi Natural Science Foundation(Nos.2020GXNSFAA297182,2020GXNSFAA297041 and 2017GXNSFBA19-8229)+5 种基金the special fund for Guangxi Bagui ScholarsNational Science and Technology Innovation Talent Cultivation Program(No.2023BZRC016)National Key R&D Program of China(Nos.2021YFB3200302 and2021YFB3200304)the Natural Science Foundation of Beijing Municipality(No.2222088)Shenzhen Science and Technology Innovation Program(No.KQTD20170810105439418)the Fundamental Research Funds for the Central Universities。
文摘Polarization upconversion luminescence(PUCL)of lanthanide ions(Ln^(3+))has been widely used in single particle tracking,microfluidics detection,three-dimensional displays,and so on.However,no effective strategy has been developed for modulating PUCL.Here we report a strategy to regulate PUCL in Ho^(3+)-doped NaYF4single nanorods based on the number of upconversion photons.By constructing a multiphoton upconversion system for Ho^(3+),we regulate the degree of polarization(DOP)of PUCL from 0.590 for two-photon luminescence to 0.929 for three-photon upconversion luminescence(UCL).Furthermore,our strategy is verified from cross-relaxation between Ho^(3+)and Yb^(3+),excitation wavelength,excitation power density,and local site symmetry.And this regulation strategy of PUCL has also been achieved in Tm^(3+),with the DOP ranging from 0.233 for two-photon luminescence to 0.925 for four-photon UCL Besides,multi-dimensional anti-counterfeiting display has been explored with PUCL.This work provides an effective strategy for regulating PUCL and also provides more opportunities for the development of polarization display optical encoding,anti-counterfeiting,and integrated optical devices.