By using the dynamic photoelastic method and our technique of fabricating an internal crack in solid , the scattered waves of incident grazing longitudinal ultrasonic wave pulse by a ribbon-type crack are ob-served an...By using the dynamic photoelastic method and our technique of fabricating an internal crack in solid , the scattered waves of incident grazing longitudinal ultrasonic wave pulse by a ribbon-type crack are ob-served and analyzed . In particular, the distribution of the intensity of the scattered head wave is measured quantitatively . The experimental results fairly agree with the theoretical ones given in ref. [ 1 ] .展开更多
The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the prop...The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the propagating crack-tip singularity intrinsic to two-dimensional elasticity are employed. THe relation between crack opening length and time step obtained from dynamic photoelaslie analysis is used as a definite condition for solving the dynamic equations and simulating the crack propagations as well As an example, the impact response of dynamie-bending-test specimen is investigated and the dynamic stress-intensity factor obtained from the mentioned finite element analysis and dynamic photoelasticity is in reasonable agreement with each other.展开更多
文摘By using the dynamic photoelastic method and our technique of fabricating an internal crack in solid , the scattered waves of incident grazing longitudinal ultrasonic wave pulse by a ribbon-type crack are ob-served and analyzed . In particular, the distribution of the intensity of the scattered head wave is measured quantitatively . The experimental results fairly agree with the theoretical ones given in ref. [ 1 ] .
文摘The present paper is addressed to the finite element method combined with dynamic photoelastic analysis of propagating cracks, that is, on the basis of [1] by Chien Wei-zang, finite elements which incorporate the propagating crack-tip singularity intrinsic to two-dimensional elasticity are employed. THe relation between crack opening length and time step obtained from dynamic photoelaslie analysis is used as a definite condition for solving the dynamic equations and simulating the crack propagations as well As an example, the impact response of dynamie-bending-test specimen is investigated and the dynamic stress-intensity factor obtained from the mentioned finite element analysis and dynamic photoelasticity is in reasonable agreement with each other.