期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Performance of a plastic scintillation fiber dosimeter based on different photoelectric devices 被引量:3
1
作者 Yue Yang Cui-Ping Yang +6 位作者 Jie Xin Hai-Feng Chen Zhong-Xu Xing Wei-Wei Qu Liang Hu Xin-Jian Chen Ren-Sheng Wang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期25-31,共7页
The photoelectric device of a scintillation dosimeter converts photons produced by radiation into an electrical signal.Its features directly determine the overall performance of the dosimeter.For a plastic scintillati... The photoelectric device of a scintillation dosimeter converts photons produced by radiation into an electrical signal.Its features directly determine the overall performance of the dosimeter.For a plastic scintillation fiber dosimeter(PSFD)with a current readout mode,systematic studies of the stability and light-dose response were performed for the photomultiplier tube(PMT),silicon photomultiplier(SiPM),avalanche photodiode(APD),and photodiode(PD).The temperature stability,long-term stability,repeatability,signal-to-noise ratio(SNR),and current dose response of the PSFD with the abovementioned photoelectric devices were studied using a pulsed LED light source and the Small Animal Radiation Therapy platform.An exponential relationship between the dark/ne current and temperature was obtained for all the devices.I is shown that the APD is the most sensitive device to temperature,with a current dependence on temperature reaching 6.5%C^(-1)at room temperature,whereas for the other devices this dependence is always<0:6%C^(-1).In terms of long-term stability,the net current of PD can change by up to 4%when working continuously for 8 h and 2%when working intermittently for 32 h,whereas for the other devices,the changes are all<1%.For the dose response,the PMT and SiPM exhibit excellent linear responses and SNRs within the range of 0.1-60 Gy/min For the PSFD with a current readout mode,the performance of the PMT and SiPM is concluded to be better than that of the other devices in the study.In particular,the SiPM,which has a compact size,low bias voltage,and antimagnetic interference,has great advantages for further applications. 展开更多
关键词 photoelectric device Plastic scintillation fiber dosimeter(PSFD) Current readout Dose response
下载PDF
Facile and effective synthesis strategy for terbium-doped hydroxyapatite toward photoelectric devices and flexible functional fibers
2
作者 Xiao-Dong Zhang Kun Nie +10 位作者 Zi-Yao Hu Ran-Ran Zhou Xiu-Qiang Duan Wu-Bin Dai Song-Song Nie Song-Jun Yao Luo-Xin Wang Le-Fu Mei Hua Wang Yi-Yi Yao Xiao-Xue Ma 《Rare Metals》 SCIE EI CAS CSCD 2024年第4期1713-1723,共11页
As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biol... As a material with good biocompatibility,hydroxyapatite(HAP)can have optical properties after doping with various rare earth ions.As a biocompatible fluorescent material,doped HAP could have broad applications in biological probes,drug delivery,optoelectronic materials,fluorescence anti-counterfeiting,and other aspects.In this paper,we put forward the preparation of HAP doped with terbium(Ⅲ)ions(Tb^(3+))by hydrothermal co-precipitation.By controlling the Tb^(3+)doping content in reaction and the reaction time,the changes in HAP's structure,morphology,and luminescence properties under different conditions were studied.When the doping amount of Tb^(3+)reached an optimal value,the dipole-quadrupole would occur and the concentration would be quenched.The control experiment showed that the optimal Tb3+content was 7.5×10^(-5)mol,which showed the best fluorescence performance.HAP,a non-luminous material,was rarely used in the field of fluorescent anti-counterfeiting and photoelectric devices.We proposed to prepare a luminescent aramid/polyphenylene sulfide(ACFs/PPS)fiber paper and a new light-emitting diode(LED)using the Tb-doped HAP phosphor.The composite sample exhibited an excellent stability and fluorescence performance,which also demonstrated a possibility of HAP applications in anticounterfeiting and photoelectric.The introduction of Tb3+dopant HAP was done to give HAP optical properties and broaden the application range of HAP. 展开更多
关键词 HYDROXYAPATITE Rare earth luminescence photoelectric device ARAMID Polyphenylene sulfide fiber paper Luminescent fiber
原文传递
Mn^(4+) activated phosphors in photoelectric and energy conversion devices
3
作者 Yang Ding Chunhua Wang +8 位作者 Lang Pei Qinan Mao Sateesh Bandaru Runtian Zheng Soumyajit Maitra Meijiao Liu Li-Hua Chen Bao-Lian Su Jiasong Zhong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期277-299,I0007,共24页
Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices... Owing to their high luminous efficiency and tunable emission in both red light and far-red light regions,Mn^(4+)ion-activated phosphors have appealed significant interest in photoelectric and energy conversion devices such as white light emitting diode(W-LED),plant cultivation LED,and temperature thermometer.Up to now,Mn^(4+)has been widely introduced into the lattices of various inorganic hosts for brightly redemitting phosphors.However,how to correlate the structure-activity relationship between host framework,luminescence property,and photoelectric device is urgently demanded.In this review,we thoroughly summarize the recent advances of Mn^(4+)doped phosphors.Meanwhile,several strategies like co-doping and defect passivation for improving Mn^(4+)emission are also discussed.Most importantly,the relationship between the protocols for tailoring the structures of Mn^(4+)doped phosphors,increased luminescence performance,and the targeted devices with efficient photoelectric and energy conversion efficiency is deeply correlated.Finally,the challenges and perspectives of Mn^(4+)doped phosphors for practical applications are anticipated.We cordially anticipate that this review can deliver a deep comprehension of not only Mn^(4+)luminescence mechanism but also the crystal structure tailoring strategy of phosphors,so as to spur innovative thoughts in designing advanced phosphors and deepening the applications. 展开更多
关键词 Mn^(4+) activator PHOSPHOR Structure tailoring photoelectric device Energy conversion
下载PDF
In-fiber photoelectric device based on graphene-coated tilted fiber grating 被引量:1
4
作者 Biqiang Jiang Yueguo Hou +3 位作者 Jiexing Wu Yuxin Ma Xuetao Gan Jianlin Zhao 《Opto-Electronic Science》 2023年第6期22-31,共10页
Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures.Here,we rep... Graphene and related two-dimensional materials have attracted great research interests due to prominently optical and electrical properties and flexibility in integration with versatile photonic structures.Here,we report an in-fiber photoelec-tric device by wrapping a few-layer graphene and bonding a pair of electrodes onto a tilted fiber Bragg grating(TFBG)for photoelectric and electric-induced thermo-optic conversions.The transmitted spectrum from this device consists of a dense comb of narrowband resonances that provides an observable window to sense the photocurrent and the electrical injection in the graphene layer.The device has a wavelength-sensitive photoresponse with responsivity up to 11.4 A/W,allowing the spectrum analysis by real-time monitoring of photocurrent evolution.Based on the thermal-optic effect of electrical injection,the graphene layer is energized to produce a global red-shift of the transmission spectrum of the TF-BG,with a high sensitivity approaching 2.167×10^(4)nm/A^(2).The in-fiber photoelectric device,therefore as a powerful tool,could be widely available as off-the-shelf product for photodetection,spectrometer and current sensor. 展开更多
关键词 tilted fiber grating photoelectric device GRAPHENE photoelectric conversion thermo-optic switching
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部