Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for imp...Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO_2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/Cd S/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system(Bi_2S_3/TNA as photoanode and Pt/Si PVC as photocathode at the same time), a self-bias(open-circuit voltage Voc= 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.展开更多
Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of p...Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.展开更多
Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as ...Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.展开更多
An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by t...An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.展开更多
Electrochemically treated nanoporous TiO2 was employed as a novel electrode to assist in the pho- toelectrochemical degradation of acetaminophen and valacyclovir. The prepared electrode was characterized by scanning e...Electrochemically treated nanoporous TiO2 was employed as a novel electrode to assist in the pho- toelectrochemical degradation of acetaminophen and valacyclovir. The prepared electrode was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Cyclic voltammetry (CV), Mott-Schottky plots, ultraviolet-visible light (UV-vis) absorbance spec- troscopy, and a total organic carbon (TOC) analyzer were employed to investigate the photoelec- trochemical degradation of acetaminophen and valacyclovir. The results indicated no obvious re- moval of acetaminophen and valacyclovir over 3 h when separate photochemical degradation and electrochemical oxidation were employed. In contrast, acetaminophen and valacyclovir were rapid- ly eliminated via photoelectrochemical degradation. In addition, electrochemically treated nanopo~ rous TiO2 electrodes significantly enhanced the efficacy of the photoelectrochemical degradation of acetaminophen and valacyclovir, by 86.96% and 53.12%, respectively, when compared with un- treated nanoporous TiO2 electrodes. This enhanced performance may have been attributed to the formation of Ti3~, Ti2~, and oxygen vacancies, as well as an improvement in conductivity during the electrochemical reduction process. The effect of temperature was further investigated, where the activation energy of the photoelectrochemical degradation of acetaminophen and valacyclovir was determined to be 9.62 and 18.42 kJ/mol, respectively.展开更多
Transition-metal dichalcogenide(TMD) semiconductors have attracted interest as photoelectrochemical(PEC) electrodes due to their novel band-gap structures,optoelectronic properties, and photocatalytic activities.Howev...Transition-metal dichalcogenide(TMD) semiconductors have attracted interest as photoelectrochemical(PEC) electrodes due to their novel band-gap structures,optoelectronic properties, and photocatalytic activities.However, the photo-harvesting efficiency still requires improvement. In this study, A TMD stacked heterojunction structure was adopted to further enhance the performance of the PEC cathode. A P-type WSe_2 and an N-type Mo S_2 monolayer were stacked layer-by-layer to build a ultrathin vertical heterojunction using a micro-fabrication method.In situ measurement was employed to characterize the intrinsic PEC performance on a single-sheet heterostructure.Benefitting from its built-in electric field and type II band alignment, the MoS_2/WSe_2 bilayer heterojunction exhibited exceptional photocatalytic activity and a high incident photo-to-current conversion efficiency(IPCE). Comparing with the monolayer WSe_2 cathode, the PEC current and the IPCE of the bilayer heterojunction increased by a factor of 5.6 and enhanced 50%, respectively. The intriguing performance renders the MoS_2/WSe_2 heterojunction attractive for application in high-performance PEC water splitting.展开更多
Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for m...Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.展开更多
Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil i...Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil in glycerol solution containing fluorinion and 20%deionized water. Subsequently, g-C_3N_4 film was hydrothermally grown on TNTAs via the hydrogen-bonded cyanuric acid melamine supramolecular complex. The results showed that g-C_3N_4 was successfully decorated on the TNTAs and the g-C_3N_4/TNTAs served as an efficient and stable photoanode for photoelectrochemical water splitting. The facile deposition method enables the fabrication of efficient and low-cost photoanodes for renewable energy applications.展开更多
Molybdenum oxide nanostructured thin films were grown on fluorine doped tin oxide(FTO), indium doped tin oxide(ITO) and ordinary glass substrates by thermal evaporation process without vacuum and catalysts using m...Molybdenum oxide nanostructured thin films were grown on fluorine doped tin oxide(FTO), indium doped tin oxide(ITO) and ordinary glass substrates by thermal evaporation process without vacuum and catalysts using molybdenum trioxide(MoO) powder as a source material and oxygen as a carrier gas.Various morphologies including nanobelts, disks and hexagonal rod-like nanostructures were obtained by changing the source and substrate temperatures during the growth of MoOthin films. Structural parameters, morphology, composition and surface features of the films were characterized by XRD, SEM, EDAX,XPS, AFM and Raman spectroscopy. The films were orthorhombic in structure with preferred orientation along(0 1 0) plane. Morphology analysis reveals randomly aligned nanobelts with 40 nm in thickness and a width of 800 nm and 3–12 mm in length. The disks have 1.5 μm diameters, 1 μm thickness and hexagonal rod-like nanostructures with a length, breath and width of 2 μm, 1 μm and 100 nm are formed. The samples were investigated under dark and photocurrent conditions in HSOaqueous solution as a function of applied potential. The photocurrent density of samples prepared on ITO and FTO substrate samples were compared and the results are discussed.展开更多
Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. C...Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.展开更多
Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facil...Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.展开更多
In this study, YiO2 nanoforest films consisting of nanotubes have been synthesized by a simple hydrothermal method and a subsequent sintering technique. The hydrothermal reaction time is important for the controlling ...In this study, YiO2 nanoforest films consisting of nanotubes have been synthesized by a simple hydrothermal method and a subsequent sintering technique. The hydrothermal reaction time is important for the controlling of the nanotube diameter and the specific surface area of holistic TiO2 films. When the hydrothermal process reaction time is up to 8 hours, the diameter of the nanotuhe is about 10 nm, and the specific surface area of TiO2 nanoforest films reaches the maximum. CdS nanoparticles are synthesized on TiO2 nanoforest films by the successive ionic layer adsorption and reaction (SILAR) technique. The transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX) mapping results verify that TiOz/CdS heterostructures are realized. A significant red-shift of the absorption edge from 380 nm to 540 nm can be observed after the pure TiO2 film is sensitized by CdS nanoparticles. Under irradiation of light, the current density of the optimal TiO2/CdS photoanode is 2.30 mA.cm-2 at 0 V relative to the saturated calomel electrode (SCE), which is 6 times stronger than that of the pure TiO2 photoanode. This study suggests that the TiO2 nanoforest consisting of interlinked pony-size nanotubes is a promising nanostructure for photoelectrochemical.展开更多
With continuous consumption of nonrenewable energy,solar energy has been predicted to play an essential role in meeting the energy demands and miti gating environmental issues in the future.Despite being green,clean a...With continuous consumption of nonrenewable energy,solar energy has been predicted to play an essential role in meeting the energy demands and miti gating environmental issues in the future.Despite being green,clean and pollution-free energy,solar energy cannot be adopted directly as it cannot provide sufficiently high energy density to work in the absence of machinery.Thus,it is necessary to develop an effective strategy to convert and store solar energy into chemical energy to achieve social sustainable development using solar energy as the main power source.Photocatalysis,in which semi conductor photocatalysts play a key role,is one of the most promising can didates for realising the effective utilisation of sunlight in a green,low-cost and environmentally friendly method.The photocatalytic efficiency of photo catalysts is considerably influenced by their compositions.Among the various heterostructures,Z-scheme heterojunction is one of the most interesting ar chitecture due to its outstanding performance and excellent artificial imitation of photosynthesis.Z-scheme photocatalysts have attracted considerable at tention in the past few decades.Herein,we review contemporary Z-scheme systems,with a particular focus on mechanistic breakthroughs,and highlight current state-of-the-art systems.Z-type photocatalysts are classified as tradi tional,all-solid-state,direct Z-schemes and S-scheme photocatalysts.The morphology,characterisation and working mechanism of each type of Z-scheme are discussed in detail.Furthermore,the applications of Z-scheme in photoelectrochemical water splitting,nitrogen fixation,pollutant degrada tion and carbon dioxide reduction are illustrated.Finally,we outline the main challenges and potential advances in Z-scheme architectures,as well as their future development directions.展开更多
基金supported by the EU-China EcoFuel project(FP7,246772)from the European Commission
文摘Photoelectrochemical(PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electrode degradation. This overview focuses on the recent development about catalyst nanomaterials and nanostructures in different PEC water splitting systems. As photoanode, Au nanoparticle-decorated TiO_2 nanowire electrodes exhibited enhanced photoactivity in both the UV and the visible regions due to surface plasmon resonance of Au and showed the largest photocurrent generation of up to 710 nm. Pt/Cd S/CGSe electrodes were developed as photocathode. With the role of p–n heterojunction, the photoelectrode showed high stability and evolved hydrogen continuously for more than 10 days. Further, in the Z-scheme system(Bi_2S_3/TNA as photoanode and Pt/Si PVC as photocathode at the same time), a self-bias(open-circuit voltage Voc= 0.766 V) was formed between two photoelectrodes, which could facilitate photogenerated charge transfers and enhance the photoelectrochemical performance, and which might provide new hints for PEC water splitting. Meanwhile, the existing problems and prospective solutions have also been reviewed.
基金Natural Science Foundation of Zhejiang Province,Grant/Award Number:LY23E020002National Natural Science Foundation of China,Grant/Award Number:52272085 and 51972178+1 种基金Natural Science Foundation of Ningbo,Grant/Award Number:2021J145China Postdoctoral Science Foundation,Grant/Award Number:2020M681966。
文摘Conversion of solar energy into H_(2) by photoelectrochemical(PEC)water splitting is recognized as an ideal way to address the growing energy crisis and environmental issues.In a typical PEC cell,the construction of photoanodes is crucial to guarantee the high efficiency and stability of PEC reactions,which fundamentally rely on rationally designed semiconductors(as the active materials)and substrates(as the current collectors).In this review work,we start with a brief introduction of the roles of substrates in the PEC process.Then,we provide a systematic overview of representative strategies for the controlled fabrication of photoanodes on rationally designed substrates,including conductive glass,metal,sapphire,silicon,silicon carbide,and flexible substrates.Finally,some prospects concerning the challenges and research directions in this area are proposed.
基金the National Basic Research Development of China(2011CB936003)the National Natural Science Foundation of China(50971116)。
文摘Photocatalytic splitting of water over p-type semiconductors is a promising strategy for production of hydrogen.However,the determination of rate law is rarely reported.To this purpose,copper oxide(CuO)is selected as a model photocathode in this study,and the photogenerated surface charge density,interfacial charge transfer rate constant and their relation to the water reduction rate(in terms of photocurrent)were investigated by a combination of(photo)electrochemical techniques.The results showed that the charge transfer rate constant is exponential-dependent on the surface charge density,and that the photocurrent equals to the product of the charge transfer rate constant and surface charge density.The reaction is first-order in terms of surface charge density.Such an unconventional rate law contrasts with the reports in literature.The charge density-dependent rate constant results from the Fermi level pinning(i.e.,Galvani potential is the main driving force for the reaction)due to accumulation of charge in the surface states and/or Frumkin behavior(i.e.,chemical potential is the main driving force).This study,therefore,may be helpful for further investigation on the mechanism of hydrogen evolution over a CuO photocathode and for designing more efficient CuO-based photocatalysts.
基金supported by the National Natural Science Foundation of China (21173088)the Science and Technology Project of Guangdong Province (2014A030312007, 2015A050502012, 2016A010104013)+1 种基金the China Postdoctoral Science Foundation (2016M592493)the Open Research Fund of Hunan Key Laboratory of Applied Environmental Photocatalysis (CCSU-XT-06),Changsha University~~
文摘An immobilized Cu2O/g-C3N4 heterojunction film was successfully made on an FTO substrate by electrophoretic deposition of g-C3N4 on a Cu2O thin film.The photoelectrochemical(PEC) performance for water splitting by the Cu2O/g-C3N4 film was better than pure g-C3N4 and pure Cu2O film.Under-0.4 V external bias and visible light irradiation,the photocurrent density and PEC hydrogen evolution efficiency of the optimized Cu2O/g-C3N4 film was-1.38 mA/cm^2 and 0.48 mL h^-1 cm^-2,respectively.The enhanced PEC performance of Cu2O/g-C3N4 was attributed to the synergistic effect of light coupling and a matching energy band structure between g-C3N4 and Cu2O as well as the external bias.
基金supported by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada(NSERC).G.H.Xie thanks the State Scholarship Fund of China Scholarship Council(CSC)the Natural Science Foundation of Henan Province(122300410177).A.C.Chen ac-knowledges NSERCthe Canada Foundation for Innovation for the Canada Research Chair Award~~
文摘Electrochemically treated nanoporous TiO2 was employed as a novel electrode to assist in the pho- toelectrochemical degradation of acetaminophen and valacyclovir. The prepared electrode was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Cyclic voltammetry (CV), Mott-Schottky plots, ultraviolet-visible light (UV-vis) absorbance spec- troscopy, and a total organic carbon (TOC) analyzer were employed to investigate the photoelec- trochemical degradation of acetaminophen and valacyclovir. The results indicated no obvious re- moval of acetaminophen and valacyclovir over 3 h when separate photochemical degradation and electrochemical oxidation were employed. In contrast, acetaminophen and valacyclovir were rapid- ly eliminated via photoelectrochemical degradation. In addition, electrochemically treated nanopo~ rous TiO2 electrodes significantly enhanced the efficacy of the photoelectrochemical degradation of acetaminophen and valacyclovir, by 86.96% and 53.12%, respectively, when compared with un- treated nanoporous TiO2 electrodes. This enhanced performance may have been attributed to the formation of Ti3~, Ti2~, and oxygen vacancies, as well as an improvement in conductivity during the electrochemical reduction process. The effect of temperature was further investigated, where the activation energy of the photoelectrochemical degradation of acetaminophen and valacyclovir was determined to be 9.62 and 18.42 kJ/mol, respectively.
基金supported by the National Natural Science Foundation of China (Grant Nos.51290271,51672314)the Guangdong Natural Science Foundation (Grant No.2016A030313359)+2 种基金the Science and Technology Program of Guangzhou (Grant No.201707010224)the Science and Technology Department of Guangdong Provincethe Fundamental Research Funds for the Central Universities
文摘Transition-metal dichalcogenide(TMD) semiconductors have attracted interest as photoelectrochemical(PEC) electrodes due to their novel band-gap structures,optoelectronic properties, and photocatalytic activities.However, the photo-harvesting efficiency still requires improvement. In this study, A TMD stacked heterojunction structure was adopted to further enhance the performance of the PEC cathode. A P-type WSe_2 and an N-type Mo S_2 monolayer were stacked layer-by-layer to build a ultrathin vertical heterojunction using a micro-fabrication method.In situ measurement was employed to characterize the intrinsic PEC performance on a single-sheet heterostructure.Benefitting from its built-in electric field and type II band alignment, the MoS_2/WSe_2 bilayer heterojunction exhibited exceptional photocatalytic activity and a high incident photo-to-current conversion efficiency(IPCE). Comparing with the monolayer WSe_2 cathode, the PEC current and the IPCE of the bilayer heterojunction increased by a factor of 5.6 and enhanced 50%, respectively. The intriguing performance renders the MoS_2/WSe_2 heterojunction attractive for application in high-performance PEC water splitting.
基金supported by National Natural Science Foundation of China(Grant no.41506093)
文摘Photoelectrochemical(PEC) cathodic protection is considered as an environment friendly method for metals anticorrosion. In this technology, a n-type semiconductor photoanode provides the photogenerated electrons for metal to achieve cathodic protection. Comparing with traditional PEC photoanode for water splitting, it requires the photoanode providing a suitable cathodic potential for the metal, instead of pursuit ultimate photon to electric conversion efficiency, thus it is a more possible PEC technology for engineering application. To date, great efforts have been devoted to developing novel n-type semiconductors and advanced modification method to improve the performance on PEC cathodic protection metals. Herein, recent progresses in this field are summarized. We highlight the fabrication process of PEC cathodic protection thin film, various nanostructure controlling, doping, compositing methods and their operation mechanism. Finally, the current challenges and future potential works on improving the PEC cathodic protection performance are discussed.
基金financial support from the National Natural Science Foundation of China (Nos. 51702025, 51574047)Natural Science Foundation of Jiangsu Province (Nos. BK20160277, BK20150259)
文摘Well-ordered TiO_2 nanotube arrays(TNTAs)decorated with graphitic carbon nitride(g-C_3N_4) were fabricated by anodic oxidization and calcination process.First, TNTAs were prepared via the anodic oxidation of Ti foil in glycerol solution containing fluorinion and 20%deionized water. Subsequently, g-C_3N_4 film was hydrothermally grown on TNTAs via the hydrogen-bonded cyanuric acid melamine supramolecular complex. The results showed that g-C_3N_4 was successfully decorated on the TNTAs and the g-C_3N_4/TNTAs served as an efficient and stable photoanode for photoelectrochemical water splitting. The facile deposition method enables the fabrication of efficient and low-cost photoanodes for renewable energy applications.
文摘Molybdenum oxide nanostructured thin films were grown on fluorine doped tin oxide(FTO), indium doped tin oxide(ITO) and ordinary glass substrates by thermal evaporation process without vacuum and catalysts using molybdenum trioxide(MoO) powder as a source material and oxygen as a carrier gas.Various morphologies including nanobelts, disks and hexagonal rod-like nanostructures were obtained by changing the source and substrate temperatures during the growth of MoOthin films. Structural parameters, morphology, composition and surface features of the films were characterized by XRD, SEM, EDAX,XPS, AFM and Raman spectroscopy. The films were orthorhombic in structure with preferred orientation along(0 1 0) plane. Morphology analysis reveals randomly aligned nanobelts with 40 nm in thickness and a width of 800 nm and 3–12 mm in length. The disks have 1.5 μm diameters, 1 μm thickness and hexagonal rod-like nanostructures with a length, breath and width of 2 μm, 1 μm and 100 nm are formed. The samples were investigated under dark and photocurrent conditions in HSOaqueous solution as a function of applied potential. The photocurrent density of samples prepared on ITO and FTO substrate samples were compared and the results are discussed.
基金supported by the National Major Basic Research Project of 2012CB934302the National 863 Program2011AA050518+1 种基金the Natural Science Foundation of China(Grant No.1117419711574203 and 61234005)
文摘Here, large-scale and uniform hexagonal zinc oxide(ZnO) nanosheet films were deposited onto indium tin oxide(ITO)-coated transparent conducting glass substrates via a facile galvanic displacement deposition process. Compared with other commonly used solution methods, this process avoids high temperature and electric power as well as supporting agents to make it simple and cost-effective. The as-fabricated ZnO nanosheet films have uniform hexagonal wurtzite structure. The photoelectrochemical(PEC) cell based on ZnO nanosheet film/ITO photoelectrode was also fabricated and its performance was improved by optimizing the solution concentration. A higher photocurrent density of*500 l A cm^(-2)under AM 1.5 G simulated illumination of 100 m W cm^(-2)with zero bias potential(vs. Ag/AgCl electrode) was obtained, which may ascribe to the increased surface-to-volume ratio of disordered Zn O nanosheet arrays. Our developed method may be used to deposit other oxide semiconductors, and the Zn O nanosheet film/ITO PEC cell can be used to design low-cost optoelectronic and photoelectrochemical devices.
基金sponsored by the National Natural Science Foundation of China (Nos. 51402190, 61574091)Shanghai Sailing Program (18YF1427800)the special funds for theoretical physics of the National Natural Science Foundation of China (No. 11747029)
文摘Photoanodes based on In_2S_3/ZnO heterojunction nanosheet arrays(NSAs) have been fabricated by atomic layer deposition of ZnO over In_2S_3 NSAs, which were in situ grown on fluorine-doped tin oxide glasses via a facile solvothermal process. The as-prepared photoanodes show dramatically enhanced performance for photoelectrochemical(PEC) water splitting, compared to single semiconductor counterparts. The optical and PEC properties of In_2S_3/ZnO NSAs have been optimized by modulating the thickness of the Zn O overlayer. After pairing with ZnO, the NSAs exhibit a broadened absorption range and an increased light absorptance over a wide wavelength region of 250–850 nm. The optimized sample of In_2S_3/ZnO-50 NSAs shows a photocurrent density of 1.642 m A cm^(-2)(1.5 V vs. RHE) and an incident photonto-current efficiency of 27.64% at 380 nm(1.23 V vs.RHE), which are 70 and 116 times higher than those of the pristine In_2S_3 NSAs, respectively. A detailed energy band edge analysis reveals the type-II band alignment of the In_2S_3/ZnO heterojunction, which enables efficient separation and collection of photogenerated carriers,especially with the assistance of positive bias potential, and then results in the significantly increased PEC activity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272086 and 11704004)the Technology Development Program of Jilin Province,China(Grant No.20130206078GX)the Natural Science Foundation of Anhui Province,China(Grant No.1808085QA20)
文摘In this study, YiO2 nanoforest films consisting of nanotubes have been synthesized by a simple hydrothermal method and a subsequent sintering technique. The hydrothermal reaction time is important for the controlling of the nanotube diameter and the specific surface area of holistic TiO2 films. When the hydrothermal process reaction time is up to 8 hours, the diameter of the nanotuhe is about 10 nm, and the specific surface area of TiO2 nanoforest films reaches the maximum. CdS nanoparticles are synthesized on TiO2 nanoforest films by the successive ionic layer adsorption and reaction (SILAR) technique. The transmission electron microscope (TEM) and energy dispersive x-ray spectroscopy (EDX) mapping results verify that TiOz/CdS heterostructures are realized. A significant red-shift of the absorption edge from 380 nm to 540 nm can be observed after the pure TiO2 film is sensitized by CdS nanoparticles. Under irradiation of light, the current density of the optimal TiO2/CdS photoanode is 2.30 mA.cm-2 at 0 V relative to the saturated calomel electrode (SCE), which is 6 times stronger than that of the pure TiO2 photoanode. This study suggests that the TiO2 nanoforest consisting of interlinked pony-size nanotubes is a promising nanostructure for photoelectrochemical.
基金supported by the Natural Science Foundation of Shandong Province of China(ZR2019MB006)National Natural Science Foundation of China(21303232)Natural Science Foundation of Guangdong Province(2018A030313460).
文摘With continuous consumption of nonrenewable energy,solar energy has been predicted to play an essential role in meeting the energy demands and miti gating environmental issues in the future.Despite being green,clean and pollution-free energy,solar energy cannot be adopted directly as it cannot provide sufficiently high energy density to work in the absence of machinery.Thus,it is necessary to develop an effective strategy to convert and store solar energy into chemical energy to achieve social sustainable development using solar energy as the main power source.Photocatalysis,in which semi conductor photocatalysts play a key role,is one of the most promising can didates for realising the effective utilisation of sunlight in a green,low-cost and environmentally friendly method.The photocatalytic efficiency of photo catalysts is considerably influenced by their compositions.Among the various heterostructures,Z-scheme heterojunction is one of the most interesting ar chitecture due to its outstanding performance and excellent artificial imitation of photosynthesis.Z-scheme photocatalysts have attracted considerable at tention in the past few decades.Herein,we review contemporary Z-scheme systems,with a particular focus on mechanistic breakthroughs,and highlight current state-of-the-art systems.Z-type photocatalysts are classified as tradi tional,all-solid-state,direct Z-schemes and S-scheme photocatalysts.The morphology,characterisation and working mechanism of each type of Z-scheme are discussed in detail.Furthermore,the applications of Z-scheme in photoelectrochemical water splitting,nitrogen fixation,pollutant degrada tion and carbon dioxide reduction are illustrated.Finally,we outline the main challenges and potential advances in Z-scheme architectures,as well as their future development directions.