期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
功能强大的变形动画制作软件PHOTOMORPH 2.0
1
作者 唐京楠 《软件世界》 1996年第1期74-74,共1页
各位多媒体玩家一定非常熟悉3D Studio、Photo Styler、PhotoShop及Quick Time等等这样鼎鼎大名的动画、图形图像、影像处理工具软件。但若有人提起PhotoMorph来,恐怕鲜为人知。
关键词 photomorph 动画变形软件 变形处理软件
下载PDF
植物子叶生理功能的研究进展 被引量:7
2
作者 王英男 彭晓媛 +3 位作者 华晓雨 臧威 阎秀峰 蔺吉祥 《草业科学》 CAS CSCD 2018年第12期2988-2997,共10页
子叶是植物种子的重要组成部分,在种子萌发与幼苗发育初期起着至关重要的作用。其具有营养贮藏、光合同化、胁迫防御等多种功能,在幼苗生长时参与贮藏物质动员、调控幼苗发育、子叶光合能力建成等多种重要生理事件。因此,子叶对于种子... 子叶是植物种子的重要组成部分,在种子萌发与幼苗发育初期起着至关重要的作用。其具有营养贮藏、光合同化、胁迫防御等多种功能,在幼苗生长时参与贮藏物质动员、调控幼苗发育、子叶光合能力建成等多种重要生理事件。因此,子叶对于种子萌发、幼苗形成以及植物生活史的完成均有极其重要的意义。近年来,关于子叶的研究多集中于盐碱、水淹等逆境胁迫下子叶生理功能的变化、子叶缺失对幼苗生长的影响以及子叶离体组织培养等方面,但对子叶功能系统性的总结还从未见报道。基于此,本文从子叶的分类及功能、幼苗发育初期子叶相关的重要生理过程等方面对子叶生理功能进行了归纳与总结,指出当前研究中存在的问题和不足,并提出了展望,以期为相关研究提供一定的理论依据。 展开更多
关键词 子叶 功能 贮藏动员 胚根发育 光形态建成
下载PDF
Species in lichen-forming fungi:balancing between conceptual and practical considerations,and between phenotype and phylogenomics 被引量:1
3
作者 Robert Lücking Steven D.Leavitt David L.Hawksworth 《Fungal Diversity》 SCIE 2021年第4期99-154,共56页
Lichens are symbiotic associations resulting from interactions among fungi(primary and secondary mycobionts),algae and/or cyanobacteria(primary and secondary photobionts),and specific elements of the bacterial microbi... Lichens are symbiotic associations resulting from interactions among fungi(primary and secondary mycobionts),algae and/or cyanobacteria(primary and secondary photobionts),and specific elements of the bacterial microbiome associated with the lichen thallus.The question of what is a species,both concerning the lichen as a whole and its main fungal component,the primary mycobiont,has faced many challenges throughout history and has reached new dimensions with the advent of molecular phylogenetics and phylogenomics.In this paper,we briefly revise the definition of lichens and the scientific and vernacular naming conventions,concluding that the scientific,Latinized name usually associated with lichens invariably refers to the primary mycobiont,whereas the vernacular name encompasses the entire lichen.Although the same lichen mycobiont may produce different phenotypes when associating with different photobionts or growing in axenic culture,this discrete variation does not warrant the application of different scientific names,but must follow the principle"one fungus=one name".Instead,broadly agreed informal designations should be used for such discrete morphologies,such as chloromorph and cyanomorph for lichens formed by the same mycobiont but with either green algae or cyanobacteria.The taxonomic recognition of species in lichen-forming fungi is not different from other fungi and conceptual and nomenclatural approaches follow the same principles.We identify a number of current challenges and provide recommendations to address these.Species delimitation in lichen-forming fungi should not be tailored to particular species concepts but instead be derived from empirical evidence,applying one or several of the following principles in what we call the LPR approach:lineage(L)coherence vs.divergence(phylogenetic component),phenotype(P)coherence vs.divergence(morphological component),and/or reproductive(R)compatibility vs.isolation(biological component).Species hypotheses can be established based on either L or P,then using either P or L(plus R)to corroborate them.The reliability of species hypotheses depends not only on the nature and number of characters but also on the context:the closer the relationship and/or similarity between species,the higher the number of characters and/or specimens that should be analyzed to provide reliable delimitations.Alpha taxonomy should follow scientific evidence and an evolutionary framework but should also offer alternative practical solutions,as long as these are scientifically defendable.Taxa that are delimited phylogenetically but not readily identifiable in the field,or are genuinely cryptic,should not be rejected due to the inaccessibility of proper tools.Instead,they can be provisionally treated as undifferentiated complexes for purposes that do not require precise determinations.The application of infraspecific(gamma)taxonomy should be restricted to cases where there is a biological rationale,i.e.,lineages of a species complex that show limited phylogenetic divergence but no evidence of reproductive isolation.Gamma taxonomy should not be used to denote discrete phenotypical variation or ecotypes not warranting the distinction at species level.We revise the species pair concept in lichen-forming fungi,which recognizes sexually and asexually reproducing morphs with the same underlying phenotype as different species.We conclude that in most cases this concept does not hold,but the actual situation is complex and not necessarily correlated with reproductive strategy.In cases where no molecular data are available or where single or multi-marker approaches do not provide resolution,we recommend maintaining species pairs until molecular or phylogenomic data are available.This recommendation is based on the example of the species pair Usnea aurantiacoatra vs.U.antarctica,which can only be resolved with phylogenomic approaches,such as microsatellites or RADseq.Overall,we consider that species delimitation in lichen-forming fungi has advanced dramatically over the past three decades,resulting in a solid framework,but that empirical evidence is still missing for many taxa.Therefore,while phylogenomic approaches focusing on particular examples will be increasingly employed to resolve difficult species complexes,broad screening using single barcoding markers will aid in placing as many taxa as possible into a molecular matrix.We provide a practical pro-tocol how to assess and formally treat taxonomic novelties.While this paper focuses on lichen fungi,many of the aspects discussed herein apply generally to fungal taxonomy.The new combination Arthonia minor(Lücking)Lücking comb.et stat.nov.(Bas.:Arthonia cyanea f.minor Lücking)is proposed. 展开更多
关键词 Alpha taxonomy Beta taxonomy Biological species concept CORA Cryptic speciation Fungal farmers Gamma taxonomy Infraspecies Lichens as ecosystems Machine learning Morphological species concept One fungus=one name photomorph Phylogenetic species concept Species pair concept Thamnolia
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部