Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive ind...Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.展开更多
We demonstrate the generation of Q-switched pulses from an ytterbium-doped fiber laser(YDFL) using quantum dot(QD) CdSe as a passive saturable absorber(SA). The CdSe QD is fabricated by the synthesis of CdO,Se, ...We demonstrate the generation of Q-switched pulses from an ytterbium-doped fiber laser(YDFL) using quantum dot(QD) CdSe as a passive saturable absorber(SA). The CdSe QD is fabricated by the synthesis of CdO,Se, and manganese acetate and paraffin oil and oleic acid as the solvent and surfactant, respectively. The CdSe QD is then doped into poly-methyl-methacrylate(PMMA) via an emulsion polymerization process. A PMMAhosted CdSe QD thin flake with a homogeneous end surface is then formed and placed between two ferrules and assembled in a YDFL cavity to achieve the Q-switching operation with a repetition rate of 24.45 to 40.50 kHz while varying the pump power from 975 to 1196 mW. The pulse width changes from 6.78 to 3.65 μs with a maximum calculated pulse energy at 0.77 μJ at a pump power of 1101 mW. This work may be the first demonstration of CdSe QD-based Q-switching in an all-fiber configuration that should give proportional insight into semiconductor QD materials in photonics applications.展开更多
基金supported by National Natural Science Foundation of China(Nos.61107030,11174280,60990323 and 60990320)the Promotive Research Fund for Excellent Young and Middle-aged Scientists of Shandong Province(No.BS2010CL025)the China Postdoctoral Science Foundation
文摘Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.
文摘We demonstrate the generation of Q-switched pulses from an ytterbium-doped fiber laser(YDFL) using quantum dot(QD) CdSe as a passive saturable absorber(SA). The CdSe QD is fabricated by the synthesis of CdO,Se, and manganese acetate and paraffin oil and oleic acid as the solvent and surfactant, respectively. The CdSe QD is then doped into poly-methyl-methacrylate(PMMA) via an emulsion polymerization process. A PMMAhosted CdSe QD thin flake with a homogeneous end surface is then formed and placed between two ferrules and assembled in a YDFL cavity to achieve the Q-switching operation with a repetition rate of 24.45 to 40.50 kHz while varying the pump power from 975 to 1196 mW. The pulse width changes from 6.78 to 3.65 μs with a maximum calculated pulse energy at 0.77 μJ at a pump power of 1101 mW. This work may be the first demonstration of CdSe QD-based Q-switching in an all-fiber configuration that should give proportional insight into semiconductor QD materials in photonics applications.