The quantum features of the temporal photon statistics of an exciton-cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear i...The quantum features of the temporal photon statistics of an exciton-cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear interactions, i.e. the exciton-exciton coupling and the phase-space filling, are much weaker than the exciton-photon interaction, the evolution of the Fano factor shows that the distribution of the photon numbers exhibits the feature of collapses-revivals (CRs), and the relevant revival time may be adjusted by several factors such as the total particle number, the detuning, and the nonlinear coupling strengths, etc. Especially, the ideal maximum antibunching with the minimum value 0 of the Fano factor occurs periodically for such a situation, with the dissipation of exciton-polariton being ignored.展开更多
文摘The quantum features of the temporal photon statistics of an exciton-cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear interactions, i.e. the exciton-exciton coupling and the phase-space filling, are much weaker than the exciton-photon interaction, the evolution of the Fano factor shows that the distribution of the photon numbers exhibits the feature of collapses-revivals (CRs), and the relevant revival time may be adjusted by several factors such as the total particle number, the detuning, and the nonlinear coupling strengths, etc. Especially, the ideal maximum antibunching with the minimum value 0 of the Fano factor occurs periodically for such a situation, with the dissipation of exciton-polariton being ignored.