The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security...The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security fields. It requires two tomographic images at sufficiently different energies. To discriminate dangerous materials of light elements such as plastic bombs in luggage, it is needed to measure accurately with several tens of kilo electron volts where such materials exhibit significant spectral differences. However, CT images in that energy region often include artifacts from beam hardening. To reduce these artifacts, a novel reconstruction method has been investigated. It is an extension of the Al-gebraic Reconstruction Technique and Total Variation (ART-TV) method that reduces the artifacts in a lower-energy CT image by referencing it to an image obtained at higher energy. The CT image of a titanium sample was recon-structed using this method in order to demonstrate the artifact reduction capability.展开更多
Photon counting detectors(PCDs) have attained w ide use in X-ray imaging for various preclinical and clinical applications in the past decade. This paper briefly review s the preclinical and clinical applications of P...Photon counting detectors(PCDs) have attained w ide use in X-ray imaging for various preclinical and clinical applications in the past decade. This paper briefly review s the preclinical and clinical applications of PCDs based X-ray imaging systems.Starting with an introduction of X-ray single photon detection mechanism,the brief review first describes tw o major advantages of utilizing PCDs: photon energy resolving capability and electronic noise elimination. Compared to energy integrating detectors(EIDs),the aforementioned advantages make PCDs more favorable in X-ray imaging with profound benefits such as enhanced tissue contrast,decreased image noise,increased signal to noise ratio,decreased radiation dose to the small animals and patients,and more accurate material decomposition. The utilizations of PCDs in X-ray projection radiography and computed tomography(CT)including micro-CT,dedicated breast CT,K-edge CT,and clinical CT are then review ed for the imaging applications ranging from phantoms to small animals and humans. In addition,optimization methods aiming to improve the imaging performance using PCDs are briefly review ed. PCDs are not flaw less though,and their limitations are also discussed in this review. Nevertheless,PCDs may continuously contribute to the advancement of X-ray imaging techniques in future preclinical and clinical applications.展开更多
Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conven- tional methods adopt sampling gates with fixed width and count the triggered number of sampling...Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conven- tional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments.展开更多
X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon countin...X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.展开更多
A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are...A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are introduced in detail. The photon counting imaging detector comprises a micro-channel plate (MCP) stack, and a wedge and strip anode (WSA). The resolution mask pattern in front of the MCP can be reconstructed after data processing in the FPGA. For high count rates, the rejection design can effectively reduce the impact of the pulse pile-up on the image. The resolution can reach up to 140μm. The pulse pile-up rejection design can also be applied to high-energy physics and particle detection.展开更多
Optical spectrum analysis provides a wealth of information about the physical world.Throughout the development of optical spectrum analysis,sensitivity has been one of the major topics and has become essential in appl...Optical spectrum analysis provides a wealth of information about the physical world.Throughout the development of optical spectrum analysis,sensitivity has been one of the major topics and has become essential in applications dealing with faint light.Various high-sensitivity optical detection technologies have been applied in optical spectrum analysis to enhance its sensitivity to single-photon level.As an emerging single-photon detection technology,superconducting nanowire single-photon detectors(SNSPDs)have many impressive features such as high detection efficiency,broad operation bandwidth,small timing jitter,and so on,which make them promising for enhancing the performance of optical spectral analysis.Diverse schemes for photon-counting spectrometers based on SNSPDs have been demonstrated.This article reviews these impressive works and prospects for the future development of this technology.Further breakthroughs can be expected in its theories,device performance,applications,and combinations with in-sensor computing,promoting it to be a mature and versatile solution for optical spectrum analysis on ultra-faint light.展开更多
Photon number resolving detectors with high accuracy bring broad applications in long-distance laser ranging, ultrafast spectroscopy, and quantum optics. In this paper, we observed the non-classical photon number dist...Photon number resolving detectors with high accuracy bring broad applications in long-distance laser ranging, ultrafast spectroscopy, and quantum optics. In this paper, we observed the non-classical photon number distribution directly with a multi-pixel photon counter (MPPC) instead of a classic Hanbury-Brown and Twiss (HBT) system. The detector’s photon-number resolving ability was characterized by quantum detector tomography. To show the quantum feature of the detector, we further plotted the Wigner function, which was obtained corresponding to the positive operator value measure (POVM) elements. Finally, we declared the observation of non-classical photon statistics from a single color center in nanodiamond by using this detector.展开更多
To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comp...To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comparators, two microcomputers, and two frequency-voltage converters. X-ray photons are detected using the detector system, and the event pulses are input to three comparators simultaneously to determine threshold energies. At a tube voltage of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy ranges are 16 - 35 and 52 - 100 keV. X-ray photons in the two ranges are counted using microcomputers, and the logical pulses from the two microcomputers are input to two frequency-voltage converters. In dual-energy computed tomography (CT), the tube voltage and current were 100 kV and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16 - 35 and 52 - 100 keV, respectively. The maximum count rate of dual-energy CT was 105 kilocounts per second with energies ranging from 16 to 100 keV, and the exposure time for tomography was 19.6 min.展开更多
Purpose K-edge imaging based on the photon counting detectors(PCDs)is an effective enhanced imaging method because the PCDs are conducive to the K-edge imaging due to the adjustable energy thresholds.The energy bins s...Purpose K-edge imaging based on the photon counting detectors(PCDs)is an effective enhanced imaging method because the PCDs are conducive to the K-edge imaging due to the adjustable energy thresholds.The energy bins significantly affect the image quality of the K-edge imaging,but the conventional energy bins used for K-edge imaging are continuous which weaken the K-edge signal and decline the image quality.Hence,how to get a better K-edge signal by the optimized energy bins is the key point for the K-edge imaging based on the PCDs.Method This paper experimentally studied the influence of the energy bins used for the K-edge imaging based on the PCDs.The conventional energy bins were determined by the theoretical-attenuation method(TAM),and the optimized energy bins were determined by the threshold-scan method(TSM).For the phantom and mice imaging,we performed both the K-edge subtraction algorithm and the K-edge decomposition algorithm on the projections obtained by the energy bins which were determined by the TAM and TSM.The image quality was compared using the CNR of the objective area.Results The experimental results showed that the energy bins identified by the TSM had a better performance than the TAM in both imaging methods.The TSM improved the CNR by~39%than the TAM in the phantom results and could better highlight the areas where the contrast agents are enriched(such as the kidney).Conclusions The optimized energy bins can better highlight the K-edge signal than the conventional energy bins which can improve the image quality and have the potential to reduce the amount of the contrast agents.展开更多
To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography us...To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography using iodine (I) and gadolinium (Gd) media. DE radiography was performed using an X-ray generator with a 0.1-mm-diam-focus tube and a 0.5-mm-thick beryllium window, a 1.0-mm-thick aluminum filter for absorbing extremely low-energy photons, and the CdTe array detector with pixel dimensions of 0.1 × 0.1 mm2. Each pixel has a charge-sensitive amplifier and a dual-energy counter, and the event pulses from the amplifier are sent to the counter to determine two threshold energies. The tube current was a maximum value of 0.50 mA, and the tube voltages for I- and Gd-K-edge radiograms were 60 and 80 kV, respectively. In the I-K-edge radiography of a dog-heart phantom at an energy range of 33 - 60 keV, the muscle density increased, and fine coronary arteries were visible. Utilizing Gd-K-edge radiography of a rabbit head phantom at an energy range of 50 - 80 keV, the muscle density increased, and fine blood vessels in the nose were observed at high contrasts. Using the DE array detector, we confirmed the image-contrast variations with changes in the threshold energy.展开更多
Detecting the X-ray emission of pulsars and obtaining the photons' time of arrival are the foundational steps in autonomous navigation via X-ray pulsar measurement.The precision of a pulse's time of arrival is mainl...Detecting the X-ray emission of pulsars and obtaining the photons' time of arrival are the foundational steps in autonomous navigation via X-ray pulsar measurement.The precision of a pulse's time of arrival is mainly determined by the precision of photon arrival time measurement.In this work,a silicon drift detector is used to measure photon energy and arrival time.The measurement system consists of a signal detector,a processing unit,a signal acquisition unit and a data receiving unit.This system acquires the energy resolution and arrival time information of photons.In particular,background noise with different energies disturbs pulse profile forming,the system can also achieve a high signal-to-noise ratio profile.Ground test results show that this system can be applied in autonomous navigation based on X-ray pulsar measurement.展开更多
文摘The material identification is a pressing requirement for the sensitive security applications. Dual-energy X-ray computer tomography (DXCT) has been investigated for material identification in the medical and security fields. It requires two tomographic images at sufficiently different energies. To discriminate dangerous materials of light elements such as plastic bombs in luggage, it is needed to measure accurately with several tens of kilo electron volts where such materials exhibit significant spectral differences. However, CT images in that energy region often include artifacts from beam hardening. To reduce these artifacts, a novel reconstruction method has been investigated. It is an extension of the Al-gebraic Reconstruction Technique and Total Variation (ART-TV) method that reduces the artifacts in a lower-energy CT image by referencing it to an image obtained at higher energy. The CT image of a titanium sample was recon-structed using this method in order to demonstrate the artifact reduction capability.
基金supported in part by a grant from the University of Oklahoma Charles and Peggy Stephenson Cancer Center funded by the Oklahoma Tobacco Settlement Endowment Trust
文摘Photon counting detectors(PCDs) have attained w ide use in X-ray imaging for various preclinical and clinical applications in the past decade. This paper briefly review s the preclinical and clinical applications of PCDs based X-ray imaging systems.Starting with an introduction of X-ray single photon detection mechanism,the brief review first describes tw o major advantages of utilizing PCDs: photon energy resolving capability and electronic noise elimination. Compared to energy integrating detectors(EIDs),the aforementioned advantages make PCDs more favorable in X-ray imaging with profound benefits such as enhanced tissue contrast,decreased image noise,increased signal to noise ratio,decreased radiation dose to the small animals and patients,and more accurate material decomposition. The utilizations of PCDs in X-ray projection radiography and computed tomography(CT)including micro-CT,dedicated breast CT,K-edge CT,and clinical CT are then review ed for the imaging applications ranging from phantoms to small animals and humans. In addition,optimization methods aiming to improve the imaging performance using PCDs are briefly review ed. PCDs are not flaw less though,and their limitations are also discussed in this review. Nevertheless,PCDs may continuously contribute to the advancement of X-ray imaging techniques in future preclinical and clinical applications.
基金supported by the Fundamental Research Funds for the Central Universities,China(Grant No.AUGA5710056414)the Program for Innovation Research of Science in Harbin Institute of Technology(Grant Nos.PIRS OF HIT A201412 and PIRS OF HIT Q201505)+3 种基金the National Natural Science Foundation of China(Grant No.11675046)the Doctoral Fund of the Ministry of Education of China(Grant No.20122302120003)the Natural Science Foundation of Heilongjiang Province of China(Grant No.A201303)the Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,China(Grant No.LBH-Q15060)
文摘Single-photon detectors possess the ultra-high sensitivity, but they cannot directly respond to signal intensity. Conven- tional methods adopt sampling gates with fixed width and count the triggered number of sampling gates, which is capable of obtaining photon counting probability to estimate the echo signal intensity. In this paper, we not only count the number of triggered sampling gates, but also record the triggered time position of photon counting pulses. The photon counting probability density distribution is obtained through the statistics of a series of the triggered time positions. Then Minimum Variance Unbiased Estimation (MVUE) method is used to estimate the echo signal intensity. Compared with conventional methods, this method can improve the estimation accuracy of echo signal intensity due to the acquisition of more detected information. Finally, a proof-of-principle laboratory system is established. The estimation accuracy of echo signal intensity is discussed and a high accuracy intensity image is acquired under low-light level environments.
基金Project supported by the Science Foundation of China Academy of Engineering Physics(Grant Nos.2013A0103003 and 2012B0102008)the National High-Tech Inertial Confinement Fusion Committee of China
文摘X-ray charge-coupled-device(CCD) camera working in single photon counting mode is a type of x-ray spectrometer with high-sensitivity and superior signal-to-noise performance. In this study, two single photon counting CCD cameras with the same mode(model: PI-LCX: 1300) are calibrated with quasi-monochromatic x-rays from radioactive sources and a conventional x-ray tube. The details of the CCD response to x-rays are analyzed by using a computer program of multi-pixel analyzing and event-distinguishing capability. The detection efficiency, energy resolution, fraction of multi-pixel events each as a function of x-ray energy, and consistence of two CCD cameras are obtained. The calibrated detection efficiency is consistent with the detection efficiency from Monte Carlo calculations with XOP program. When the multi-pixel event analysis is applied, the CCDs may be used to measure x-rays up to 60 ke V with good energy resolution(E /?E ≈ 100 at60 ke V). The difference in detection efficiency between two CCD cameras is small(5.6% at 5.89 ke V), but the difference in fraction of the single pixel event between them is much larger(25% at 8.04 ke V). The obtained small relative error of detection efficiency(2.4% at 5.89 ke V) makes the high accurate measurement of x-ray yield possible in the laser plasma interaction studies. Based on the discrete calibration results, the calculated detection efficiency with XOP can be used for the whole range of 5 ke V–30 ke V.
基金Supported by the National Natural Science Foundation of China under Grant No 11375179
文摘A novel FPGA-based pulse pile-up rejection method for single photon imaging detectors is reported. Tile method is easy to implement in FPGAs for real-time data processing. The rejection principle and entire design are introduced in detail. The photon counting imaging detector comprises a micro-channel plate (MCP) stack, and a wedge and strip anode (WSA). The resolution mask pattern in front of the MCP can be reconstructed after data processing in the FPGA. For high count rates, the rejection design can effectively reduce the impact of the pulse pile-up on the image. The resolution can reach up to 140μm. The pulse pile-up rejection design can also be applied to high-energy physics and particle detection.
基金supported by the National Key R&D Program of China(Grant No.2023YFB2806700)the National Natural Science Foundation of China(Grant No.92365210)the Tsinghua Initiative Scientific Research Program,and the project of Tsinghua University-Zhuhai Huafa Industrial Share Company Joint Institute for Architecture Optoelectronic Technologies(JIAOT).
文摘Optical spectrum analysis provides a wealth of information about the physical world.Throughout the development of optical spectrum analysis,sensitivity has been one of the major topics and has become essential in applications dealing with faint light.Various high-sensitivity optical detection technologies have been applied in optical spectrum analysis to enhance its sensitivity to single-photon level.As an emerging single-photon detection technology,superconducting nanowire single-photon detectors(SNSPDs)have many impressive features such as high detection efficiency,broad operation bandwidth,small timing jitter,and so on,which make them promising for enhancing the performance of optical spectral analysis.Diverse schemes for photon-counting spectrometers based on SNSPDs have been demonstrated.This article reviews these impressive works and prospects for the future development of this technology.Further breakthroughs can be expected in its theories,device performance,applications,and combinations with in-sensor computing,promoting it to be a mature and versatile solution for optical spectrum analysis on ultra-faint light.
基金supported by the National Natural Science Foundation of China under Grants No.11722431,No.11674099,No.11704127,and No.11621404the Program of Introducing Talents of Discipline to Universities under Grant No.B12024+2 种基金the Shanghai International Cooperation Project under Grant No.16520710600the Natural Science Foundation of Shanghai under Grant No.16ZR1409400the Shuguang Program under Grant No.15SG22 by Shanghai Education Development Foundation and Shanghai Municipal Education Commission
文摘Photon number resolving detectors with high accuracy bring broad applications in long-distance laser ranging, ultrafast spectroscopy, and quantum optics. In this paper, we observed the non-classical photon number distribution directly with a multi-pixel photon counter (MPPC) instead of a classic Hanbury-Brown and Twiss (HBT) system. The detector’s photon-number resolving ability was characterized by quantum detector tomography. To show the quantum feature of the detector, we further plotted the Wigner function, which was obtained corresponding to the positive operator value measure (POVM) elements. Finally, we declared the observation of non-classical photon statistics from a single color center in nanodiamond by using this detector.
文摘To obtain two kinds of tomograms at two different X-ray energy ranges simultaneously, we have constructed a dual-energy X-ray photon counter with a lutetium-oxyorthosilicate photomultiplier detector system, three comparators, two microcomputers, and two frequency-voltage converters. X-ray photons are detected using the detector system, and the event pulses are input to three comparators simultaneously to determine threshold energies. At a tube voltage of 100 kV, the three threshold energies are 16, 35 and 52 keV, and two energy ranges are 16 - 35 and 52 - 100 keV. X-ray photons in the two ranges are counted using microcomputers, and the logical pulses from the two microcomputers are input to two frequency-voltage converters. In dual-energy computed tomography (CT), the tube voltage and current were 100 kV and 0.29 mA, respectively. Two tomograms were obtained simultaneously at two energy ranges. The energy ranges for gadolinium-L-edge and K-edge CT were 16 - 35 and 52 - 100 keV, respectively. The maximum count rate of dual-energy CT was 105 kilocounts per second with energies ranging from 16 to 100 keV, and the exposure time for tomography was 19.6 min.
基金supported by National Key R&D Program of China(Grant No.2016YFC0100400)Science and Tech-nology Service network Initiative of Chinese Academy of Sciences(Grant No.KFJ-STS-QYZD-193)+1 种基金Instrument Developing Project of Chinese Academy of Sciences(Grant No.YZ201511)National Natu-ral Science Foundation of China(Grant No.11975250)
文摘Purpose K-edge imaging based on the photon counting detectors(PCDs)is an effective enhanced imaging method because the PCDs are conducive to the K-edge imaging due to the adjustable energy thresholds.The energy bins significantly affect the image quality of the K-edge imaging,but the conventional energy bins used for K-edge imaging are continuous which weaken the K-edge signal and decline the image quality.Hence,how to get a better K-edge signal by the optimized energy bins is the key point for the K-edge imaging based on the PCDs.Method This paper experimentally studied the influence of the energy bins used for the K-edge imaging based on the PCDs.The conventional energy bins were determined by the theoretical-attenuation method(TAM),and the optimized energy bins were determined by the threshold-scan method(TSM).For the phantom and mice imaging,we performed both the K-edge subtraction algorithm and the K-edge decomposition algorithm on the projections obtained by the energy bins which were determined by the TAM and TSM.The image quality was compared using the CNR of the objective area.Results The experimental results showed that the energy bins identified by the TSM had a better performance than the TAM in both imaging methods.The TSM improved the CNR by~39%than the TAM in the phantom results and could better highlight the areas where the contrast agents are enriched(such as the kidney).Conclusions The optimized energy bins can better highlight the K-edge signal than the conventional energy bins which can improve the image quality and have the potential to reduce the amount of the contrast agents.
文摘To confirm the imaging effect of a dual-energy (DE) cadmium telluride (CdTe) array detector (XCounter, Actaeon) and to perform fundamental studies on DE computed tomography, we performed enhanced K-edge radiography using iodine (I) and gadolinium (Gd) media. DE radiography was performed using an X-ray generator with a 0.1-mm-diam-focus tube and a 0.5-mm-thick beryllium window, a 1.0-mm-thick aluminum filter for absorbing extremely low-energy photons, and the CdTe array detector with pixel dimensions of 0.1 × 0.1 mm2. Each pixel has a charge-sensitive amplifier and a dual-energy counter, and the event pulses from the amplifier are sent to the counter to determine two threshold energies. The tube current was a maximum value of 0.50 mA, and the tube voltages for I- and Gd-K-edge radiograms were 60 and 80 kV, respectively. In the I-K-edge radiography of a dog-heart phantom at an energy range of 33 - 60 keV, the muscle density increased, and fine coronary arteries were visible. Utilizing Gd-K-edge radiography of a rabbit head phantom at an energy range of 50 - 80 keV, the muscle density increased, and fine blood vessels in the nose were observed at high contrasts. Using the DE array detector, we confirmed the image-contrast variations with changes in the threshold energy.
基金Supported by National Natural Science Foundation of China(10973048)
文摘Detecting the X-ray emission of pulsars and obtaining the photons' time of arrival are the foundational steps in autonomous navigation via X-ray pulsar measurement.The precision of a pulse's time of arrival is mainly determined by the precision of photon arrival time measurement.In this work,a silicon drift detector is used to measure photon energy and arrival time.The measurement system consists of a signal detector,a processing unit,a signal acquisition unit and a data receiving unit.This system acquires the energy resolution and arrival time information of photons.In particular,background noise with different energies disturbs pulse profile forming,the system can also achieve a high signal-to-noise ratio profile.Ground test results show that this system can be applied in autonomous navigation based on X-ray pulsar measurement.