In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A...In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.展开更多
The model that two two level atoms interact with a singel mode cavity is studied. The exact solution of the time evolution operator for the two atom Jaynes Cummings model is presented by the bare states approach. Furt...The model that two two level atoms interact with a singel mode cavity is studied. The exact solution of the time evolution operator for the two atom Jaynes Cummings model is presented by the bare states approach. Furthermore, we investigate the dynamical properties of the photon statistics of the cavity field, and obtain a number of novel features.展开更多
In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, includin...In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.展开更多
In this paper, we present an improved circuit model for single-photon avalanche diodes without any convergence problems. The device simulation is based on Orcad PSpice and all the employed components are available in ...In this paper, we present an improved circuit model for single-photon avalanche diodes without any convergence problems. The device simulation is based on Orcad PSpice and all the employed components are available in the standard library of the software. In particular, an intuitionistic and simple voltage-controlled current source is adopted to characterize the static behavior, which can better represent the voltage-current relationship than traditional model and reduce computational complexity of simulation. The derived can implement the self-sustaining, self-quenching and the recovery processes of the SPAD. And the simulation shows a reasonable result that the model can well emulate the avalanche process of SPAD.展开更多
The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical ...The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.展开更多
<span style="font-family:Verdana;">A successful single parameter model has be</span><span style="font-family:Verdana;">en </span><span style="font-family:Verdana;&qu...<span style="font-family:Verdana;">A successful single parameter model has be</span><span style="font-family:Verdana;">en </span><span style="font-family:Verdana;">formulated to match the observations of photons from type 1a supernovae which were previously used to corroborate the standard </span><span style="font-family:Verdana;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">𝛬</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cold dark matter model. The new single parameter model extrapolates all the way back to the cosmic background radiation (CMB) without requiring a separate model to describe inflation of the space dimensions after the Big Bang. This single parameter model assumes that spacetime forms a finite symmetrical manifold with positive curvature. For the spacetime manifold to be finite, the time dimension must also have positive curvature. This model was formulated to consider whether the curvature of the time dimension may be related to the curvature of the space dimensions. This possibility is not considered in the more complex models previously used to fit the available redshift data. The geometry for the finite spacetime manifold was selected to be compatible with the Friedmann equation with positive curvature. The manifold shape was motivated by an assumption that there exists a matter hemisphere (when considering time together with a single space dimension) and an antimatter hemisphere to give a symmetrical and spherical overall spacetime manifold. Hence, the space dimension expands from a pole to the equator, at a maximum value for the time dimension. This is analogous to the expansion of a circle of latitude on a globe from a pole to the equator. The three space dimensions are identical so that any arbitrary single space direction may be selected. The initial intention was to modify the assumed geometry for the spacetime manifold to account for the presence of matter. It was surprisingly found that, within the error of the reported measurements, no further modification was necessary to fit the data. The Friedmann equation reduces to the Schwarzschild equation at the equator so this can be used to predict the total amount of mass in the Universe. The resulting prediction is of the order of 10</span><sup><span style="font-family:Verdana;">51</span></sup><span style="font-family:Verdana;"> kg. The corresponding density of matter at the current time is approxima</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">tely 1.6 × 10</span><sup><span style="font-family:Verdana;">-28</span></sup><span style="font-family:Verdana;"> kg<span style="color:#636363;"><span style="font-size:13.3333px;"><span style="white-space:nowrap;">·</span></span></span>m</span><sup><span style="font-family:Verdana;">-3</span></sup><span style="font-family:Verdana;">.</span></span>展开更多
This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause ...This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.展开更多
We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth ad...We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth additional coordinate, the interval S is used. This value is constant under the usual Lorentz transformations in M, but it changes when the transformations in the extended space G are used. We call this model the Extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. In the ESM, gravity and electromagnetism are combined in one field. In the ESM, a photon can have a nonzero mass and this mass can be either positive or negative. It is also possible to establish in the frame of ESM connection between mass of a particle and its size.展开更多
In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system i...In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different.展开更多
The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the P...The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.展开更多
This pilot study was to assess the high temperature and zero baryon density region of quantum chromodynamics(QCD) phase diagram with thermal photon emission,where the nature of QCD phase transition is ambiguous.Based ...This pilot study was to assess the high temperature and zero baryon density region of quantum chromodynamics(QCD) phase diagram with thermal photon emission,where the nature of QCD phase transition is ambiguous.Based on a(3+1)-D ideal hydrodynamical model to describe macroscopically the collision system,thermal photons emitted from Pb+Pb collisions at 2.76 TeV are investigated.The result reveals that photons from heavy ion collisions at high energy and centrality are possible to distinguish the structure of the hot dense matter,in QGP phase or hadronic phase,thus may provide an approach to explore the nature of this finite-temperature QCD transition(that is,first-order,second-order or analytic crossover).展开更多
Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorpt...Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorption processes, of a newly synthesized asymmetrical charge-transfer organic molecule bis-(4-bromo-phenyl)-[4-(2-pyridin-4-yl-vinyl)phenyl]-amine (BPYPA). There exist two charge-transfer states for the compound in visible region. The two-photon absorption cross section calculated by a three-state model and solvatochromic shift of the charge-transfer states are found to be solvent-dependent, where a nonmonotonic behaviour with respect to the polarity of the solvents is observed. The numerical results show that the organic molecule exhibits a rather large two-photon absorption cross section as compared with the compound 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine (DBASVP) reported previously, and is predicted to be a good two-photon polymerization initiator. The hydrogen-bond effect is analysed. The computational results are in good agreement with the measurements.展开更多
In this article we make a detailed study and a presentation of the different models of circuit’s equivalent to silicon-based photovoltaic solar cells. Starting from a real solar cell and real phenomena from the manuf...In this article we make a detailed study and a presentation of the different models of circuit’s equivalent to silicon-based photovoltaic solar cells. Starting from a real solar cell and real phenomena from the manufacture of the cell to the production of current by the cell. A comparison of the models with a real experimental method is carried out. The comparison is based on an overlay of the results. The study allowed us to choose the most suitable model. We are interested in the losses by leaks and the losses due to the development of the cell. In fact, we studied the influence of the shunt resistance on the current-voltage characteristic and the electrical power.展开更多
On the level of the time-dependent hybrid density functional theory, the one- and two-photon absorption properties of a series of symmetric 4-bis{2-[4-(2-aryl) phenyl]vinyl)-2,5-bisdialkoxybenzenes are studied resp...On the level of the time-dependent hybrid density functional theory, the one- and two-photon absorption properties of a series of symmetric 4-bis{2-[4-(2-aryl) phenyl]vinyl)-2,5-bisdialkoxybenzenes are studied respectively utilizing the analytic response theory and the few-state model methods. The calculated results show that the planarity of the geometrical structure plays a great role in enhancing the linear and nonlinear optical abilities of the molecule. However the effect of the length of the chain linked to the π-centre on the optical property is very little. For the investigated compounds, the A-π-A type charge-transfer molecules display more superior one- and two-photon absorption characteristics than the D-π-D type ones. Furthermore, the two-photon absorption results by use of few-state model are generally consistent with those by analytic response theory, demonstrating the reliability of the few-state model for evaluating the two-photon absorption cross section. The numerical simulations are in good agreement in tendency with the available experimental measurements.展开更多
In this work a complete approach for estimation of the spatial resolution for the gamma camera imaging based on the [1] is analyzed considering where the body distance is detected (close or far way). The organ of inte...In this work a complete approach for estimation of the spatial resolution for the gamma camera imaging based on the [1] is analyzed considering where the body distance is detected (close or far way). The organ of interest most of the times is not well defined, so in that case it is appropriate to use elliptical camera detection instead of circular. The image reconstruction is presented which allows spatially varying amounts of local smoothing. An inhomogeneous Markov random field (M.r.f.) model is described which allows spatially varying degrees of smoothing in the reconstructions and a re-parameterization is proposed which implicitly introduces a local correlation structure in the smoothing parameters using a modified maximum likelihood estimation (MLE) denoted as one step late (OSL) introduced by [2].展开更多
In this study all energy in the universe, here called energy quanta, originate from a singularity at the centre of the universe. These energy quanta have different frequencies and at each frequency the energy quanta c...In this study all energy in the universe, here called energy quanta, originate from a singularity at the centre of the universe. These energy quanta have different frequencies and at each frequency the energy quanta can have positive or negative spin direction. There is a force of attraction between energy quanta which have exactly the same frequency but opposite spins. This is the dominating force in the universe and accounts for the strong nuclear force, the Coulomb force and the gravitational force. The universe contains one more basic entity;the oscillator quantum which absorbs and re-emits energy quanta at one specific frequency. The oscillator quantum can have positive or negative spin. Thus, there is a force of attraction between oscillator quanta with opposite spins and which amalgamates oscillator quanta into larger structures, i.e. particles (e.g. electron). These particles also have spin at a specific spin frequency and they have positive or negative spin. Thus they absorb and re-emit energy quanta at a frequency specific to the particle and where they can have positive or negative spin. This amalgamates particles into larger structures, e.g. quarks, neutron, proton and atomic nucleus. Using this model enables simple and stringent descriptions of elementary particle physics, electromagnetic theory, gravity, photon and inertial mass. The present model may be a step towards unification of elementary particle physics, general relativity, quantum physics and electromagnetic theory into one comprehensive theory.展开更多
The actual world model, the “Standard Model of Cosmology” (SMC), which dates back to the 1950s, no longer corresponds to the latest state of knowledge on the cosmos. By way of example, the assumption made in the SMC...The actual world model, the “Standard Model of Cosmology” (SMC), which dates back to the 1950s, no longer corresponds to the latest state of knowledge on the cosmos. By way of example, the assumption made in the SMC that the expansion of the cosmos is continually being reduced due to the effect of the gravitation exerted on all the matter in the universe is now contradicted by recent measurements. The reason for the expansion of cosmic space in accordance with Hubble’s Law is not physically explained by the SMC but merely stated as a fact. Another example is provided by the “dark phenomena”, which make up by far the greatest part of the energy of the cosmos, and exert a dominant influence on its behaviour. In spite of intensive research over the decades to provide answers to these as well as other open issues in cosmology, no satisfactory and plausible answers have hitherto been found. It is indeed time to propose an alternative cosmological world model to the SMC in the light of the latest insights on the universe.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 1097602/A06)
文摘In this paper,the energy spectrum of the two-photon Jaynes-Cummings model(TPJCM) is calculated exactly in the non-rotating wave approximation(non-RWA),and we study the level-crossing problem by means of fidelity.A narrow peak of the fidelity is observed at the level-crossing point,which does not appear at the avoided-crossing point.Therefore fidelity is perfectly suited for detecting the level-crossing point in the energy spectrum.
文摘The model that two two level atoms interact with a singel mode cavity is studied. The exact solution of the time evolution operator for the two atom Jaynes Cummings model is presented by the bare states approach. Furthermore, we investigate the dynamical properties of the photon statistics of the cavity field, and obtain a number of novel features.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10374025)the Natural Science Foundation of Hunan Province of China (Grant No. 07JJ3013)the Education Ministry of Hunan Province of China (Grant No. 06A038)
文摘In this paper, the entanglement dynamics of a double two-photon Jaynes-Cummings model with Kerr-like medium is investigated. It is shown that initial entanglement has an interesting subsequent time evolution, including the so-called entanglement sudden death effect. It is also shown analytically that the Kerr-like medium can repress entanglement sudden death and enhance the degree of atom-atom entanglement. A more interesting fact is that the Kerr effect is more obvious when each of the two cavities with have the Kerr-like medium than only one of them with the Kerr-like medium.
文摘In this paper, we present an improved circuit model for single-photon avalanche diodes without any convergence problems. The device simulation is based on Orcad PSpice and all the employed components are available in the standard library of the software. In particular, an intuitionistic and simple voltage-controlled current source is adopted to characterize the static behavior, which can better represent the voltage-current relationship than traditional model and reduce computational complexity of simulation. The derived can implement the self-sustaining, self-quenching and the recovery processes of the SPAD. And the simulation shows a reasonable result that the model can well emulate the avalanche process of SPAD.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB328206)the National Natural Science Foundation of China(Grant No.60977033)the Science and Technology Innovation Foundation for Excellent Doctors of Beijing Jiaotong University,China(Grant Nos.141055522 and 141060522)
文摘The flexible structure of photonic crystal fibre not only offers novel optical properties but also brings some difficulties in keeping the fibre structure in the fabrication process which inevitably cause the optical properties of the resulting fibre to deviate from the designed properties. Therefore, a method of evaluating the optical properties of the actual fibre is necessary for the purpose of application. Up to now, the methods employed to measure the properties of the actual photonic crystal fibre often require long fibre samples or complex expensive equipments. To our knowledge, there are few studies of modeling an actual photonic crystal fibre and evaluating its properties rapidly. In this paper, a novel method, based on the combination model of digital image processing and the finite element method, is proposed to rapidly model the optical properties of the actual photonic crystal fibre. Two kinds of photonic crystal fibres made by Crystal Fiber A/S are modeled. It is confirmed from numerical results that the proposed method is simple, rapid and accurate for evaluating the optical properties of the actual photonic crystal fibre without requiring complex equipment.
文摘<span style="font-family:Verdana;">A successful single parameter model has be</span><span style="font-family:Verdana;">en </span><span style="font-family:Verdana;">formulated to match the observations of photons from type 1a supernovae which were previously used to corroborate the standard </span><span style="font-family:Verdana;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">𝛬</span></span></span><span style="font-family:;" "=""><span style="font-family:Verdana;"> cold dark matter model. The new single parameter model extrapolates all the way back to the cosmic background radiation (CMB) without requiring a separate model to describe inflation of the space dimensions after the Big Bang. This single parameter model assumes that spacetime forms a finite symmetrical manifold with positive curvature. For the spacetime manifold to be finite, the time dimension must also have positive curvature. This model was formulated to consider whether the curvature of the time dimension may be related to the curvature of the space dimensions. This possibility is not considered in the more complex models previously used to fit the available redshift data. The geometry for the finite spacetime manifold was selected to be compatible with the Friedmann equation with positive curvature. The manifold shape was motivated by an assumption that there exists a matter hemisphere (when considering time together with a single space dimension) and an antimatter hemisphere to give a symmetrical and spherical overall spacetime manifold. Hence, the space dimension expands from a pole to the equator, at a maximum value for the time dimension. This is analogous to the expansion of a circle of latitude on a globe from a pole to the equator. The three space dimensions are identical so that any arbitrary single space direction may be selected. The initial intention was to modify the assumed geometry for the spacetime manifold to account for the presence of matter. It was surprisingly found that, within the error of the reported measurements, no further modification was necessary to fit the data. The Friedmann equation reduces to the Schwarzschild equation at the equator so this can be used to predict the total amount of mass in the Universe. The resulting prediction is of the order of 10</span><sup><span style="font-family:Verdana;">51</span></sup><span style="font-family:Verdana;"> kg. The corresponding density of matter at the current time is approxima</span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">tely 1.6 × 10</span><sup><span style="font-family:Verdana;">-28</span></sup><span style="font-family:Verdana;"> kg<span style="color:#636363;"><span style="font-size:13.3333px;"><span style="white-space:nowrap;">·</span></span></span>m</span><sup><span style="font-family:Verdana;">-3</span></sup><span style="font-family:Verdana;">.</span></span>
文摘This paper is the second instalment in our study of the observed time delay in the arrival times of radio photons emanating from Gamma Ray Bursts (GRBs). The mundane assumption in contemporary physics as to the cause of these pondersome time delays is that they are a result of the photon being endowed with a non-zero mass. While we do not rule out the possibility of a non-zero mass for the photon, our working assumption is that the major cause of these time delays may very well be that these photons are travelling in a rarefied cosmic plasma in which the medium’s electrons interact with the electric component of the Photon, thus generating tiny currents that lead to dispersion, hence, a frequency-dependent speed of Light (FDSL). In the present instalment, we “improve” on the model presented in the first instalment by dropping the assumption that the resultant pairs of these radio photons leave the shock front simultaneously. The new assumption of a non-simultaneous— albeit systematic—emission of these photon pairs allows us to obtain a much more convincing and stronger correlation in the time delay. This new correlation allows us to build a unified model for the four GRBs in our sample using a relative distance correction mechanism. The new unified model allows us to obtain as our most significant result a value for the frequency equivalence of the interstellar medium (ISM)’s conductance ν* ~ 1.500 ± 0.009 Hzand also an independent distance measure to the GRBs where we obtain for our four GRB samples an average distance of: ~69.40 ± 0.10, 40.00 ± 0.00, 58.40 ± 0.40, and 86.00 ± 1.00 Mpc, for GRB 030329, 980425, 000418 and 021004 respectively.
文摘We propose the generalization of Einstein’s special theory of relativity (STR). In our model, we use the (1 + 4)-dimensional space G, which is the extension of the (1 + 3)-dimensional Minkowski space M. As a fifth additional coordinate, the interval S is used. This value is constant under the usual Lorentz transformations in M, but it changes when the transformations in the extended space G are used. We call this model the Extended space model (ESM). From a physical point of view, our expansion means that processes in which the rest mass of the particles changes are acceptable now. In the ESM, gravity and electromagnetism are combined in one field. In the ESM, a photon can have a nonzero mass and this mass can be either positive or negative. It is also possible to establish in the frame of ESM connection between mass of a particle and its size.
文摘In this paper, we present a structure for obtaining the exact eigenfunctions and eigenvalues of the Jaynes-Cummings model (JCM) without the rotating wave approximation (RWA). We study the evolution of the system in the strong coupling region using the time evolution operator without RWA. The entanglement of the system without RWA is investigated using the Von Neumann entropy as an entanglement measure. It is interesting that in the weak coupling regime, the population of the atomic levels and Von Neumann entropy without RWA model shows a good agreement with the RWA whereas in strong coupling domain, the results of these two models are quite different.
基金supported by the National Natural Science Foundation of China (61172138)the Open Fund of Key Laboratory of Precision Navigation and Technology,National Time Service Center,CAS (2012PNTT02)
文摘The distribution probability of the photon interarrival time (PIT) without signal initial phases is derived based on the Poisson model of X-ray pulsar signals, and a pulsar signal detection algorithm employing the PIT sequence is put forward. The joint probability of the PIT sequence is regarded as a function of the distribution probability and used to compare a constant radiation intensity model with the nonhomogeneous Poisson model for the signal detection. The relationship between the number of detected photons and the probabilities of false negative and positive is studied, and the success rate and mean detection time are estimated based on the number of the given photons. For the spacecraft velocity data detection, the changes of time of photon arrival (TOPA) and PIT caused by spacecraft motion are presented first, then the influences on detection are analyzed respectively. By using the analytical pulse profile of PSR B0531+21, the simulation of the Xray pulsar signal detection is implemented. The simulation results verify the effectiveness of the proposed method, and the contrast tests show that the proposed method is suitable for the spacecraft velocity data detection.
基金Supported by National Natural Science Foundation of China(NSFC) projects (No.11275081)Program for New Century Excellent Talents in University(NCET)
文摘This pilot study was to assess the high temperature and zero baryon density region of quantum chromodynamics(QCD) phase diagram with thermal photon emission,where the nature of QCD phase transition is ambiguous.Based on a(3+1)-D ideal hydrodynamical model to describe macroscopically the collision system,thermal photons emitted from Pb+Pb collisions at 2.76 TeV are investigated.The result reveals that photons from heavy ion collisions at high energy and centrality are possible to distinguish the structure of the hot dense matter,in QGP phase or hadronic phase,thus may provide an approach to explore the nature of this finite-temperature QCD transition(that is,first-order,second-order or analytic crossover).
基金Project supported by the National Natural Science Foundation of China (Grant No 10274044) and Shandong Natural Science Foundation (Grant No Y2004A08).
文摘Time-dependent hybrid density functional theory in combination with polarized continuum model is applied to study the solvent effects on the geometrical and electronic structures as well as one- and two-photon absorption processes, of a newly synthesized asymmetrical charge-transfer organic molecule bis-(4-bromo-phenyl)-[4-(2-pyridin-4-yl-vinyl)phenyl]-amine (BPYPA). There exist two charge-transfer states for the compound in visible region. The two-photon absorption cross section calculated by a three-state model and solvatochromic shift of the charge-transfer states are found to be solvent-dependent, where a nonmonotonic behaviour with respect to the polarity of the solvents is observed. The numerical results show that the organic molecule exhibits a rather large two-photon absorption cross section as compared with the compound 4-trans-[p-(N, N-Di-n-butylamino)-p-stilbenyl vinyl] pyridine (DBASVP) reported previously, and is predicted to be a good two-photon polymerization initiator. The hydrogen-bond effect is analysed. The computational results are in good agreement with the measurements.
文摘In this article we make a detailed study and a presentation of the different models of circuit’s equivalent to silicon-based photovoltaic solar cells. Starting from a real solar cell and real phenomena from the manufacture of the cell to the production of current by the cell. A comparison of the models with a real experimental method is carried out. The comparison is based on an overlay of the results. The study allowed us to choose the most suitable model. We are interested in the losses by leaks and the losses due to the development of the cell. In fact, we studied the influence of the shunt resistance on the current-voltage characteristic and the electrical power.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics),Higher Educational Science and Technology Program of Shandong Province(Grant No.J09LA13)
文摘On the level of the time-dependent hybrid density functional theory, the one- and two-photon absorption properties of a series of symmetric 4-bis{2-[4-(2-aryl) phenyl]vinyl)-2,5-bisdialkoxybenzenes are studied respectively utilizing the analytic response theory and the few-state model methods. The calculated results show that the planarity of the geometrical structure plays a great role in enhancing the linear and nonlinear optical abilities of the molecule. However the effect of the length of the chain linked to the π-centre on the optical property is very little. For the investigated compounds, the A-π-A type charge-transfer molecules display more superior one- and two-photon absorption characteristics than the D-π-D type ones. Furthermore, the two-photon absorption results by use of few-state model are generally consistent with those by analytic response theory, demonstrating the reliability of the few-state model for evaluating the two-photon absorption cross section. The numerical simulations are in good agreement in tendency with the available experimental measurements.
文摘In this work a complete approach for estimation of the spatial resolution for the gamma camera imaging based on the [1] is analyzed considering where the body distance is detected (close or far way). The organ of interest most of the times is not well defined, so in that case it is appropriate to use elliptical camera detection instead of circular. The image reconstruction is presented which allows spatially varying amounts of local smoothing. An inhomogeneous Markov random field (M.r.f.) model is described which allows spatially varying degrees of smoothing in the reconstructions and a re-parameterization is proposed which implicitly introduces a local correlation structure in the smoothing parameters using a modified maximum likelihood estimation (MLE) denoted as one step late (OSL) introduced by [2].
文摘In this study all energy in the universe, here called energy quanta, originate from a singularity at the centre of the universe. These energy quanta have different frequencies and at each frequency the energy quanta can have positive or negative spin direction. There is a force of attraction between energy quanta which have exactly the same frequency but opposite spins. This is the dominating force in the universe and accounts for the strong nuclear force, the Coulomb force and the gravitational force. The universe contains one more basic entity;the oscillator quantum which absorbs and re-emits energy quanta at one specific frequency. The oscillator quantum can have positive or negative spin. Thus, there is a force of attraction between oscillator quanta with opposite spins and which amalgamates oscillator quanta into larger structures, i.e. particles (e.g. electron). These particles also have spin at a specific spin frequency and they have positive or negative spin. Thus they absorb and re-emit energy quanta at a frequency specific to the particle and where they can have positive or negative spin. This amalgamates particles into larger structures, e.g. quarks, neutron, proton and atomic nucleus. Using this model enables simple and stringent descriptions of elementary particle physics, electromagnetic theory, gravity, photon and inertial mass. The present model may be a step towards unification of elementary particle physics, general relativity, quantum physics and electromagnetic theory into one comprehensive theory.
文摘The actual world model, the “Standard Model of Cosmology” (SMC), which dates back to the 1950s, no longer corresponds to the latest state of knowledge on the cosmos. By way of example, the assumption made in the SMC that the expansion of the cosmos is continually being reduced due to the effect of the gravitation exerted on all the matter in the universe is now contradicted by recent measurements. The reason for the expansion of cosmic space in accordance with Hubble’s Law is not physically explained by the SMC but merely stated as a fact. Another example is provided by the “dark phenomena”, which make up by far the greatest part of the energy of the cosmos, and exert a dominant influence on its behaviour. In spite of intensive research over the decades to provide answers to these as well as other open issues in cosmology, no satisfactory and plausible answers have hitherto been found. It is indeed time to propose an alternative cosmological world model to the SMC in the light of the latest insights on the universe.