The integration of robust photon-absorption capacity,high reactive oxygen speciesyields and photothermal conversion efficiency(PCE)into a single phototheranosticnano-agents is ideal but rarely reported.This study empl...The integration of robust photon-absorption capacity,high reactive oxygen speciesyields and photothermal conversion efficiency(PCE)into a single phototheranosticnano-agents is ideal but rarely reported.This study employed a dual-acceptorengineering strategy utilizing isoindigo and selenium-substituted[1,2,5]thiadiazolo[3,4-c]pyridine to augment the molar extinction coefficient and spin-orbitcoupling effect,respectively,resulting in a substantial enhancement of photonabsorptionability and non-radiative decay energy-release process of donoracceptortype phototherapy molecules.As the optimal phototherapy agent,IID-PSe exhibited a high molar extinction coefficient two times that of photosensitizer,excellent 1O2 yield(15%)and PCE(34%),exhibiting great potential forphototherapy.After encapsulating with DSPE-PEG2000,IID-PSe NPs showedexcellent anti-tumor phototherapy ability both in vitro and in vivo.This workprovides an effective idea for designing high-performance photosensitive dyeswith high efficiency phototherapy output.展开更多
基金supported by the National Natural Science Foundation of China(21925802,22338005,22308049)Liaoning Binhai Laboratory(LBLB-2023-03)+1 种基金the Fundamental Research Funds for the Central Universities(DUT22LAB601)the Postdoctoral ResearchFoundation of Ningbo Institute of Dalian University ofTechnology(03020002).
文摘The integration of robust photon-absorption capacity,high reactive oxygen speciesyields and photothermal conversion efficiency(PCE)into a single phototheranosticnano-agents is ideal but rarely reported.This study employed a dual-acceptorengineering strategy utilizing isoindigo and selenium-substituted[1,2,5]thiadiazolo[3,4-c]pyridine to augment the molar extinction coefficient and spin-orbitcoupling effect,respectively,resulting in a substantial enhancement of photonabsorptionability and non-radiative decay energy-release process of donoracceptortype phototherapy molecules.As the optimal phototherapy agent,IID-PSe exhibited a high molar extinction coefficient two times that of photosensitizer,excellent 1O2 yield(15%)and PCE(34%),exhibiting great potential forphototherapy.After encapsulating with DSPE-PEG2000,IID-PSe NPs showedexcellent anti-tumor phototherapy ability both in vitro and in vivo.This workprovides an effective idea for designing high-performance photosensitive dyeswith high efficiency phototherapy output.