In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in th...In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron.展开更多
In this review,we will focus on recent progress on the investigations of nondipole effects in few-electron atoms and molecules interacting with light fields.We first briefly survey several popular theoretical methods ...In this review,we will focus on recent progress on the investigations of nondipole effects in few-electron atoms and molecules interacting with light fields.We first briefly survey several popular theoretical methods and relevant concepts in strong field and attosecond physics beyond the dipole approximation.Physical phenomena stemming from the breakdown of the dipole approximation are then discussed in various topics,including the radiation pressure and photon-momentum transfer,the atomic stabilization,the dynamic interference,and the high-order harmonic generation.Whenever available,the corresponding experimental observations of these nondipole effects are also introduced respectively in each topics.展开更多
文摘In quantum mechanics, the energy of a hydrogen atom is minimized when the principal quantum number n is 1. However, the author has previously pointed out that the hydrogen atom has a state where n=0. An electron in the state where n=0has zero rest mass energy. However, a hydrogen atom has an energy level even lower than the n=0state. This is hard to accept from the standpoint of common sense. Thus, the author has previously pointed out that an electron at the energy level where n=0has zero energy because the positive energy mec2and negative energy −mec2cancel each other out. This paper elucidates the strange relationship between the momentum of a photon emitted when a hydrogen atom is formed by an electron with such characteristics, and the momentum acquired by the electron.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11961131008,11725416,and 11574010)the National Key Research and Development Program of China(Grant No.2018YFA0306302)
文摘In this review,we will focus on recent progress on the investigations of nondipole effects in few-electron atoms and molecules interacting with light fields.We first briefly survey several popular theoretical methods and relevant concepts in strong field and attosecond physics beyond the dipole approximation.Physical phenomena stemming from the breakdown of the dipole approximation are then discussed in various topics,including the radiation pressure and photon-momentum transfer,the atomic stabilization,the dynamic interference,and the high-order harmonic generation.Whenever available,the corresponding experimental observations of these nondipole effects are also introduced respectively in each topics.