Explosive growth in demand for data traffic has prompted exploration of the spatial dimension of lightwaves, which provides a degree of freedom to expand data transmission capacity. Various techniques basedon bulky op...Explosive growth in demand for data traffic has prompted exploration of the spatial dimension of lightwaves, which provides a degree of freedom to expand data transmission capacity. Various techniques basedon bulky optical devices have been proposed to tailor light waves in the spatial dimension. However, theirinherent large size, extra loss, and precise alignment requirements make these techniques relativelydifficult to implement in a compact and flexible way. In contrast, three-dimensional (3D) photonic chips withcompact size and low loss provide a promising miniaturized candidate for tailoring light in the spatialdimension. Significantly, they are attractive for chip-assisted short-distance spatial mode optical interconnectsthat are challenging to bulky optics. Here, we propose and fabricate femtosecond laser-inscribed 3D photonicchips to tailor orbital angular momentum (OAM) modes in the spatial dimension. Various functions on theplatform of 3D photonic chips are experimentally demonstrated, including the generation, (de)multiplexing,and exchange of OAM modes. Moreover, chip-chip and chip–fiber–chip short-distance optical interconnectsusing OAM modes are demonstrated in the experiment with favorable performance. This work paves the wayto flexibly tailor light waves on 3D photonic chips and offers a compact solution for versatile opticalinterconnects and other emerging applications with spatial modes.展开更多
Entanglement is one of the most vital properties of quantum mechanical systems,and it forms the backbone of quantum information technologies.Taking advantage of nano/microfabrication and particularly complementary met...Entanglement is one of the most vital properties of quantum mechanical systems,and it forms the backbone of quantum information technologies.Taking advantage of nano/microfabrication and particularly complementary metal-oxide-semiconductor manufacturing technologies,photonic integrated circuits(PICs)have emerged as a versatile platform for the generation,manipulation,and measurement of entangled photonic states.We summarize the recent progress of quantum entanglement on PICs,starting from the generation of nonentangled and entangled biphoton states,to the generation of entangled states of multiple photons,multiple dimensions,and multiple degrees of freedom,as well as their applications for quantum information processing.展开更多
A maximal photon number entangled state,namely NOON state,can be adopted for sensing with a quantum enhancedprecision.In this work,we designed silicon quantum photonic chips containing two types of Mach-Zehnder interf...A maximal photon number entangled state,namely NOON state,can be adopted for sensing with a quantum enhancedprecision.In this work,we designed silicon quantum photonic chips containing two types of Mach-Zehnder interferometerswherein the two-photon NOON state,sensing element for temperature or humidity,is generated.Compared with classicallight or single photon case,two-photon NOON state sensing shows a solid enhancement in the sensing resolution andprecision.As the first demonstration of on-chip quantum photonic sensing,it reveals the advantages of photonic chips forhigh integration density,small-size,stability for multiple-parameter sensing serviceability.A higher sensing precision isexpected to beat the standard quantum limit with a higher photon number NOON state.展开更多
We provide an overview of quantum photonic network on chip. We begin from the discussion of the pros and cons of several material platforms for engineering quantum photonic chips. Then we introduce and analyze the bas...We provide an overview of quantum photonic network on chip. We begin from the discussion of the pros and cons of several material platforms for engineering quantum photonic chips. Then we introduce and analyze the basic building blocks and functional units of quantum photonic integrated circuits. In the main part of this review, we focus on the generation and manipulation of quantum states of light on chip and are particularly interested in some applications of advanced integrated circuits with different functionalities for quantum information processing, including quantum communication, quantum computing, and quantum simulation. We emphasize that developing fully integrated quantum photonic chip which contains sources of quantum light, integrate circuits, modulators, quantum storage, and detectors are promising approaches for future quantum photonic technologies. Recent achievements in the large scale photonic chips for linear optical computing are also included. Finally, we illustrate the challenges toward high performance quantum information processing devices and conclude with promising perspectives in this field.展开更多
With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of ...With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of the phase shifters on the chip increasingly difficult.For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters.In this work,we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically,we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.展开更多
High-quality photonic materials are critical for promoting integrated photonic devices with broad bandwidths,high efficiencies,and flexibilities for high-volume chip-scale fabrication.Recently,we designed a home-devel...High-quality photonic materials are critical for promoting integrated photonic devices with broad bandwidths,high efficiencies,and flexibilities for high-volume chip-scale fabrication.Recently,we designed a home-developed chalcogenide glass(ChG)-Ge_(25)Sb_(10)S_(65)(GeSbS)for optical information processing chips and systems,which featured an ultrabroad transmission window,a high Kerr nonlinearity and photoelastic coefficient,and compatibility with the photonic hybrid integration technology of silicon photonics.Chip-integrated GeSbS microresonators and microresonator arrays with high quality factors and lithographically controlled fine structures were fabricated using a modified nanofabrication process.Moreover,considering the high Kerr nonlinearity and photoelastic effect of ChGs,we realised a novel ChG hybrid integrated chip,inspired by recent advances in integrated soliton microcombs and acousto-optic(AO)modulators.展开更多
Quantum entanglement,as the strictly non-classical phenomenon,is the kernel of quantum computing and quantum simulation,and has been widely applied ranging from fundamental tests of quantum physics to quantum informat...Quantum entanglement,as the strictly non-classical phenomenon,is the kernel of quantum computing and quantum simulation,and has been widely applied ranging from fundamental tests of quantum physics to quantum information processing.Meanwhile,the topolog-ical phase is found inherently capable of protecting physical fields from unavoidable fabrication-induced disorder,which inspires the po-tential application of topological protection to quantum states.Here,we present the experimental demonstration of topologically protected quantum entangled states on a photonic chip.The process tomogra-phy shows that quantum entanglement can be well preserved by the topological states even when the chip material introduces disorder and relative polarization rotation in phase space.Our work links the fields of materials,topological science and quantum physics,opening the door to wide applications of topological enhancement in quantum regime.展开更多
Quantum-photonic chips,which integrate quantum light sources alongside active and passive optical elements,as well as singlephoton detectors,show great potential for photonic quantum information processing and quantum...Quantum-photonic chips,which integrate quantum light sources alongside active and passive optical elements,as well as singlephoton detectors,show great potential for photonic quantum information processing and quantum technology.Mature semiconductor nanofabrication processes allow for scaling such photonic integrated circuits to on-chip networks of increasing complexity.Second-order nonlinear materials are the method of choice for generating photonic quantum states in the overwhelming majority of linear optic experiments using bulk components,but integration with waveguide circuitry on a nanophotonic chip proved to be challenging.Here,we demonstrate such an on-chip parametric down-conversion source of photon pairs based on second-order nonlinearity in an aluminum-nitride microring resonator.We show the potential of our source for quantum information processing by measuring the high visibility anti-bunching of heralded single photons with nearly ideal state purity.Our down-conversion source yields measured coincidence rates of 80 Hz,which implies MHz generation rates of correlated photon pairs.Low noise performance is demonstrated by measuring high coincidence-to-accidental ratios.The generated photon pairs are spectrally far separated from the pump field,providing great potential for realizing sufficient on-chip filtering and monolithic integration of quantum light sources,waveguide circuits and single-photon detectors.展开更多
A photonic lab on a chip(PhLOC),comprising a solid-state light emitter(SSLE)aligned with a biofunctionalized optofluidic multiple internal reflection(MIR)system,is presented.The SSLE is obtained by filling a microflui...A photonic lab on a chip(PhLOC),comprising a solid-state light emitter(SSLE)aligned with a biofunctionalized optofluidic multiple internal reflection(MIR)system,is presented.The SSLE is obtained by filling a microfluidic structure with a phenyltrimethoxysilane(PhTMOS)aqueous sol solution containing a fluorophore organic dye.After curing,the resulting xerogel solid structure retains the emitting properties of the fluorophore,which is evenly distributed in the xerogel matrix.Photostability studies demonstrate that after a total dose(at λ5365 nm)greater than 24 J cm^(-2),the xerogel emission decay is only 4.1%.To re-direct the emitted light,the SSLE includes two sets of air mirrors that surround the xerogel.Emission mapping of the SSLE demonstrates that alignment variations of 150 mm(between the SSLE and the external pumping light source)provide fluctuations in emitted light smaller than 5%.After this verification,the SSLE is monolithically implemented with a MIR,forming the PhLOC.Its performance is assessed by measuring quinolone yellow,obtaining a limit of detection(LOD)of(0.6060.01)mM.Finally,the MIR is selectively biofunctionalized with horseradish peroxidase(HRP)for the detection of hydrogen peroxide(H_(2)O_(2))target analyte,obtaining a LOD of(0.760.1)μM for H_(2)O_(2),confirming,for the first time,that solid-state xerogel-based emitters can be massively implemented in biofunctionalized PhLOCs.展开更多
On-chip topological nanophotonic devices,which take photons as in-formation carriers with topological protection during light propaga-tion,have great application potential in the next generation photonic chips.The top...On-chip topological nanophotonic devices,which take photons as in-formation carriers with topological protection during light propaga-tion,have great application potential in the next generation photonic chips.The topological photonic states enable the nanophotonic de-vices to be robust and stable,immune to scattering even with imper-fect structures.The development,opportunities and challenges of the on-chip topological nanophotonic devices have attracted great atten-tion of scholars,and desired to be known.In this review,topologi-cal devices were introduced in the order of functionalities on an in-tegrated photonic chip,i.e.topological light source,topological light waveguiding,topological light division and selection,topological light manipulation and topological light detecting.Finally,we gave out-looks for predicting and promoting the performances of on-chip topo-logical nanophotonic devices from the angles of non-Hermitian sys-tems,non-Abelian topology,metasurfaces,intelligent algorithms and multiple functional topological nanophotonic integration.This review provides rich knowledge about on-chip topological nanophotonic de-vices.The insights in this paper will spark inspiration and inspire new thinking for the realization of topological photonic chips.展开更多
Exceptional points(EPs),which are typically defined as the degener-acy points of a non-Hermitian Hamiltonian,have been investigated in various physical systems such as photonic systems.In particular,the intriguing top...Exceptional points(EPs),which are typically defined as the degener-acy points of a non-Hermitian Hamiltonian,have been investigated in various physical systems such as photonic systems.In particular,the intriguing topological structures around EPs have given rise to novel strategies for manipulating photons and the underlying mechanism is especially useful for on-chip photonic applications.Although some on-chip experiments with the adoption of lasers have been reported,EP-based photonic chips working in the quantum regime largely re-main elusive.In the current work,a single-photon experiment was proposed to dynamically encircle an EP in on-chip photonic waveg-uides possessing passive anti-parity-time symmetry.Photon coinci-dences measurement reveals a chiral feature of transporting single photons,which can act as a building block for on-chip quantum de-vices that require asymmetric transmissions.The findings in the cur-rent work pave the way for on-chip experimental study on the physics of EPs as well as inspiring applications for on-chip non-Hermitian quantum devices.展开更多
Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications.By efficient modification of refractive indices of dielectric crystals...Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications.By efficient modification of refractive indices of dielectric crystals,optical waveguides with diverse configurations have been produced by femtosecond laser writing.The waveguiding properties depend not only on the parameters of the laser writing but also on the nature of the crystals.The mode profile tailoring and polarization engineering are realizable by selecting appropriate fabrication conditions.In addition,regardless of the complexity of crystal refractive index changes induced by ultrafast pulses,several three-dimensional geometries have been designed and implemented that are useful for the fabrication of laser-written photonic chips.Some intriguing devices,e.g.,waveguide lasers,wavelength converters,and quantum memories,have been made,exhibiting potential for applications in various areas.Our work gives a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals and focuses on the recent advances of this research area,including the fundamentals,fabrication,and selected photonic applications.展开更多
Optical neural network(ONNs)are emerging as attractive propos-als for machine-learning applications.However,the stability of ONNs decreases with the circuit depth,limiting the scalability of ONNs for practical uses.He...Optical neural network(ONNs)are emerging as attractive propos-als for machine-learning applications.However,the stability of ONNs decreases with the circuit depth,limiting the scalability of ONNs for practical uses.Here we demonstrate how to compress the circuit depth to scale only logarithmically in terms of the dimension of the data,leading to an exponential gain in terms of noise robustness.Our low-depth(LD)-ONN is based on an architecture,called Optical Com-puTing Of dot-Product UnitS(OCTOPUS),which can also be applied individually as a linear perceptron for solving classification problems.We present both numerical and theoretical evidence showing that LD-ONN can exhibit a significant improvement on robustness,compared with previous ONN proposals based on singular-value decomposition.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.62125503 and 62261160388)the Key R&D Program of Hubei Province of China(Grant Nos.2020BAB001 and 2021BAA024)+2 种基金the Key R&D Program of Guangdong Province(Grant No.2018B030325002)the Shenzhen Science and Technology Program(Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2021BG004).
文摘Explosive growth in demand for data traffic has prompted exploration of the spatial dimension of lightwaves, which provides a degree of freedom to expand data transmission capacity. Various techniques basedon bulky optical devices have been proposed to tailor light waves in the spatial dimension. However, theirinherent large size, extra loss, and precise alignment requirements make these techniques relativelydifficult to implement in a compact and flexible way. In contrast, three-dimensional (3D) photonic chips withcompact size and low loss provide a promising miniaturized candidate for tailoring light in the spatialdimension. Significantly, they are attractive for chip-assisted short-distance spatial mode optical interconnectsthat are challenging to bulky optics. Here, we propose and fabricate femtosecond laser-inscribed 3D photonicchips to tailor orbital angular momentum (OAM) modes in the spatial dimension. Various functions on theplatform of 3D photonic chips are experimentally demonstrated, including the generation, (de)multiplexing,and exchange of OAM modes. Moreover, chip-chip and chip–fiber–chip short-distance optical interconnectsusing OAM modes are demonstrated in the experiment with favorable performance. This work paves the wayto flexibly tailor light waves on 3D photonic chips and offers a compact solution for versatile opticalinterconnects and other emerging applications with spatial modes.
基金the support from the National Key Research and Development(R&D)Program of China(Nos.2019YFA0308702,2018YFB1107205,and 2016YFA0301302)the National Natural Science Foundation of China(Nos.61975001,61590933,61904196,61675007,11975026,and 12075159)+1 种基金Beijing Natural Science Foundation(No.Z190005)the Key R&D Program of Guangdong Province(No.2018B030329001).
文摘Entanglement is one of the most vital properties of quantum mechanical systems,and it forms the backbone of quantum information technologies.Taking advantage of nano/microfabrication and particularly complementary metal-oxide-semiconductor manufacturing technologies,photonic integrated circuits(PICs)have emerged as a versatile platform for the generation,manipulation,and measurement of entangled photonic states.We summarize the recent progress of quantum entanglement on PICs,starting from the generation of nonentangled and entangled biphoton states,to the generation of entangled states of multiple photons,multiple dimensions,and multiple degrees of freedom,as well as their applications for quantum information processing.
基金supported by the National Key R&D Program of China(Grant No.2022YFF0712800)Innova-tion Program for Quantum Science and Technology(Grant No.2021ZD0301500).
文摘A maximal photon number entangled state,namely NOON state,can be adopted for sensing with a quantum enhancedprecision.In this work,we designed silicon quantum photonic chips containing two types of Mach-Zehnder interferometerswherein the two-photon NOON state,sensing element for temperature or humidity,is generated.Compared with classicallight or single photon case,two-photon NOON state sensing shows a solid enhancement in the sensing resolution andprecision.As the first demonstration of on-chip quantum photonic sensing,it reveals the advantages of photonic chips forhigh integration density,small-size,stability for multiple-parameter sensing serviceability.A higher sensing precision isexpected to beat the standard quantum limit with a higher photon number NOON state.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.61632021,11621091,11627810,and 11690031)
文摘We provide an overview of quantum photonic network on chip. We begin from the discussion of the pros and cons of several material platforms for engineering quantum photonic chips. Then we introduce and analyze the basic building blocks and functional units of quantum photonic integrated circuits. In the main part of this review, we focus on the generation and manipulation of quantum states of light on chip and are particularly interested in some applications of advanced integrated circuits with different functionalities for quantum information processing, including quantum communication, quantum computing, and quantum simulation. We emphasize that developing fully integrated quantum photonic chip which contains sources of quantum light, integrate circuits, modulators, quantum storage, and detectors are promising approaches for future quantum photonic technologies. Recent achievements in the large scale photonic chips for linear optical computing are also included. Finally, we illustrate the challenges toward high performance quantum information processing devices and conclude with promising perspectives in this field.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0305200)the Key Research and Development Program of Guangdong Province,China(Grant Nos.2018B030329001 and 2018B030325001)the National Natural Science Foundation of China(Grant No.61974168)。
文摘With the development of research on integrated photonic quantum information processing,the integration level of the integrated quantum photonic circuits has been increasing continuously,which makes the calibration of the phase shifters on the chip increasingly difficult.For the calibration of multiple cascaded phase shifters that is not easy to be decoupled,the resources consumed by conventional brute force methods increase exponentially with the number of phase shifters,making it impossible to calibrate a relatively large number of cascaded phase shifters.In this work,we experimentally validate an efficient method for calibrating cascaded phase shifters that achieves an exponential increase in calibration efficiency compared to the conventional method,thus solving the calibration problem for multiple cascaded phase shifters.Specifically,we experimentally calibrate an integrated quantum photonic circuit with nine cascaded phase shifters and achieve a high-precision calibration with an average fidelity of 99.26%.
基金supported by the National Key R&D Program of China under Grant(2019YFA0706301)the Key Project in Broadband Communication and New Network of the Ministry of Science and Technology(MOST)(2018YFB1801003)+1 种基金the National Science Foundation of China(NSFC)(U2001601,61975242,61525502,62175095,62375292)the Natural Science Foundation of Guangdong Province for Distinguished Young Scholars(2023B1515020028).
文摘High-quality photonic materials are critical for promoting integrated photonic devices with broad bandwidths,high efficiencies,and flexibilities for high-volume chip-scale fabrication.Recently,we designed a home-developed chalcogenide glass(ChG)-Ge_(25)Sb_(10)S_(65)(GeSbS)for optical information processing chips and systems,which featured an ultrabroad transmission window,a high Kerr nonlinearity and photoelastic coefficient,and compatibility with the photonic hybrid integration technology of silicon photonics.Chip-integrated GeSbS microresonators and microresonator arrays with high quality factors and lithographically controlled fine structures were fabricated using a modified nanofabrication process.Moreover,considering the high Kerr nonlinearity and photoelastic effect of ChGs,we realised a novel ChG hybrid integrated chip,inspired by recent advances in integrated soliton microcombs and acousto-optic(AO)modulators.
基金supported by the National Key R&D Program of China(Grants No.2019YFA0706302,No.2017YFA0303700 and No.2019YFA0308700)National Natural Science Foundation of China(Grants No.11761141014,No.61734005,and No.11690033)+1 种基金Science and Technology Commission of Shanghai Municipality(Grants No.17JC1400403 and No.2019SHZDZX01)Shanghai Municipal Education Commission(Grant No.2017-01-07-00-02-E00049).
文摘Quantum entanglement,as the strictly non-classical phenomenon,is the kernel of quantum computing and quantum simulation,and has been widely applied ranging from fundamental tests of quantum physics to quantum information processing.Meanwhile,the topolog-ical phase is found inherently capable of protecting physical fields from unavoidable fabrication-induced disorder,which inspires the po-tential application of topological protection to quantum states.Here,we present the experimental demonstration of topologically protected quantum entangled states on a photonic chip.The process tomogra-phy shows that quantum entanglement can be well preserved by the topological states even when the chip material introduces disorder and relative polarization rotation in phase space.Our work links the fields of materials,topological science and quantum physics,opening the door to wide applications of topological enhancement in quantum regime.
基金support from a Packard Fellowship in Science and Engineeringsupport from the Deutsche Forschungsgemeinschaft(SCHU 2871/2-1)supported by Yale SEAS cleanroom and Yale Institute for Nanoscience and Quantum Engineering.
文摘Quantum-photonic chips,which integrate quantum light sources alongside active and passive optical elements,as well as singlephoton detectors,show great potential for photonic quantum information processing and quantum technology.Mature semiconductor nanofabrication processes allow for scaling such photonic integrated circuits to on-chip networks of increasing complexity.Second-order nonlinear materials are the method of choice for generating photonic quantum states in the overwhelming majority of linear optic experiments using bulk components,but integration with waveguide circuitry on a nanophotonic chip proved to be challenging.Here,we demonstrate such an on-chip parametric down-conversion source of photon pairs based on second-order nonlinearity in an aluminum-nitride microring resonator.We show the potential of our source for quantum information processing by measuring the high visibility anti-bunching of heralded single photons with nearly ideal state purity.Our down-conversion source yields measured coincidence rates of 80 Hz,which implies MHz generation rates of correlated photon pairs.Low noise performance is demonstrated by measuring high coincidence-to-accidental ratios.The generated photon pairs are spectrally far separated from the pump field,providing great potential for realizing sufficient on-chip filtering and monolithic integration of quantum light sources,waveguide circuits and single-photon detectors.
基金The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme(FP7/2007-2013)/ERC grant agreement no.209243 and Spanish MINECO,project ref.TEC2010-17274.AG acknowledges the support received by CONACyTSB gratefully acknowledges the financial support received by the Volkswagen Foundation.
文摘A photonic lab on a chip(PhLOC),comprising a solid-state light emitter(SSLE)aligned with a biofunctionalized optofluidic multiple internal reflection(MIR)system,is presented.The SSLE is obtained by filling a microfluidic structure with a phenyltrimethoxysilane(PhTMOS)aqueous sol solution containing a fluorophore organic dye.After curing,the resulting xerogel solid structure retains the emitting properties of the fluorophore,which is evenly distributed in the xerogel matrix.Photostability studies demonstrate that after a total dose(at λ5365 nm)greater than 24 J cm^(-2),the xerogel emission decay is only 4.1%.To re-direct the emitted light,the SSLE includes two sets of air mirrors that surround the xerogel.Emission mapping of the SSLE demonstrates that alignment variations of 150 mm(between the SSLE and the external pumping light source)provide fluctuations in emitted light smaller than 5%.After this verification,the SSLE is monolithically implemented with a MIR,forming the PhLOC.Its performance is assessed by measuring quinolone yellow,obtaining a limit of detection(LOD)of(0.6060.01)mM.Finally,the MIR is selectively biofunctionalized with horseradish peroxidase(HRP)for the detection of hydrogen peroxide(H_(2)O_(2))target analyte,obtaining a LOD of(0.760.1)μM for H_(2)O_(2),confirming,for the first time,that solid-state xerogel-based emitters can be massively implemented in biofunctionalized PhLOCs.
基金supported by National Natural Science Foundation of China(12274031,92050110,12275145)Beijing Institute of Technology Research Fund Program for Teli Young Fellows.
文摘On-chip topological nanophotonic devices,which take photons as in-formation carriers with topological protection during light propaga-tion,have great application potential in the next generation photonic chips.The topological photonic states enable the nanophotonic de-vices to be robust and stable,immune to scattering even with imper-fect structures.The development,opportunities and challenges of the on-chip topological nanophotonic devices have attracted great atten-tion of scholars,and desired to be known.In this review,topologi-cal devices were introduced in the order of functionalities on an in-tegrated photonic chip,i.e.topological light source,topological light waveguiding,topological light division and selection,topological light manipulation and topological light detecting.Finally,we gave out-looks for predicting and promoting the performances of on-chip topo-logical nanophotonic devices from the angles of non-Hermitian sys-tems,non-Abelian topology,metasurfaces,intelligent algorithms and multiple functional topological nanophotonic integration.This review provides rich knowledge about on-chip topological nanophotonic de-vices.The insights in this paper will spark inspiration and inspire new thinking for the realization of topological photonic chips.
基金supported by National Natural Sci-ence Foundation of China(NSFC)under Grants 61825502,11974140 and#61827826Scientific and Technological Development Plan Program of Jilin Province(SKL202302012)Work done in Hong Kong was supported by RGC Hong Kong(N_HKUST608/17,AoE/P-502/20 and C6013-18G-A)and by the Croucher Foundation.
文摘Exceptional points(EPs),which are typically defined as the degener-acy points of a non-Hermitian Hamiltonian,have been investigated in various physical systems such as photonic systems.In particular,the intriguing topological structures around EPs have given rise to novel strategies for manipulating photons and the underlying mechanism is especially useful for on-chip photonic applications.Although some on-chip experiments with the adoption of lasers have been reported,EP-based photonic chips working in the quantum regime largely re-main elusive.In the current work,a single-photon experiment was proposed to dynamically encircle an EP in on-chip photonic waveg-uides possessing passive anti-parity-time symmetry.Photon coinci-dences measurement reveals a chiral feature of transporting single photons,which can act as a building block for on-chip quantum de-vices that require asymmetric transmissions.The findings in the cur-rent work pave the way for on-chip experimental study on the physics of EPs as well as inspiring applications for on-chip non-Hermitian quantum devices.
基金financially supported by the National Natural Science Foundation of China (Nos. 12174222 and 61775120)the Natural Science Foundation of Shandong Province (ZR2021ZD02)Taishan Scholars Program of Shandong Province
文摘Femtosecond laser inscription or writing has been recognized as a powerful technique to engineer various materials toward a number of applications.By efficient modification of refractive indices of dielectric crystals,optical waveguides with diverse configurations have been produced by femtosecond laser writing.The waveguiding properties depend not only on the parameters of the laser writing but also on the nature of the crystals.The mode profile tailoring and polarization engineering are realizable by selecting appropriate fabrication conditions.In addition,regardless of the complexity of crystal refractive index changes induced by ultrafast pulses,several three-dimensional geometries have been designed and implemented that are useful for the fabrication of laser-written photonic chips.Some intriguing devices,e.g.,waveguide lasers,wavelength converters,and quantum memories,have been made,exhibiting potential for applications in various areas.Our work gives a concise review of the femtosecond laser-inscribed waveguides in dielectric crystals and focuses on the recent advances of this research area,including the fundamentals,fabrication,and selected photonic applications.
基金supported by the Natural Science Foundation of Guangdong Province(Grant No.2017B030308003)the Key R&D Pro-gram of Guangdong province(Grant No.2018B030326001)+2 种基金the Sci-ence,Technology and Innovation Commission of Shenzhen Municipality(Grant No.JCYJ20170412152620376 and No.JCYJ20170817105046702 and No.KYTDPT20181011104202253)National Natural Science Foundation of China(Grant No.11875160 and No.U1801661)the Economy,Trade and In-formation Commission of Shenzhen Municipality(Grant No.201901161512),and Guangdong Provincial Key Laboratory(Grant No.2019B121203002).
文摘Optical neural network(ONNs)are emerging as attractive propos-als for machine-learning applications.However,the stability of ONNs decreases with the circuit depth,limiting the scalability of ONNs for practical uses.Here we demonstrate how to compress the circuit depth to scale only logarithmically in terms of the dimension of the data,leading to an exponential gain in terms of noise robustness.Our low-depth(LD)-ONN is based on an architecture,called Optical Com-puTing Of dot-Product UnitS(OCTOPUS),which can also be applied individually as a linear perceptron for solving classification problems.We present both numerical and theoretical evidence showing that LD-ONN can exhibit a significant improvement on robustness,compared with previous ONN proposals based on singular-value decomposition.