Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by ...Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by finite element method (FEM). The gold film was selectively coated on the inner wall of one cladding air hole which was located near the fiber core along the y-axis direction. When the phase of core fundamental mode and surface plasmon polaritons (SPPs) mode matches, the two modes couple with each other intensely. Numerical results show that the resonance wavelength and strength vary with fiber structural parameters and the index of the infilling liquid. The fiber parameters were optimized to achieve specific functions. Under the optimal structure, we realized a dual channel filter at the communication wavelength of 1.31 μm and 1.55 μm fory polarization direction and x polarization direction. Then a single channel polarized filter at the communication wavelength of 1.55 μm is also achieved by adjusting the refractive index of the infilling liquid. The proposed polarization filters realized dual channel filtering and single channel filtering simultaneously under the same structure for the first time to the best of our knowledge.展开更多
The supercontinuum (SC) generation in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be ac...The supercontinuum (SC) generation in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be achieved by pumping the ANDi PCF with picosecond pump pulses. However, the PCF length required may have to be lengthened to several tens of centimeters, which is much longer than that with femtosecond pump pulses. The relatively long PCF gives rise to much higher Raman gain and stronger Raman frequency shift compared to those with femtosecond pump pulses, which in turn not only cause a distorted temporal waveform and an un-flattened spectrum, but also severely degrade the coherence of the generated SC.展开更多
A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber(PCF) is designed.Properties of birefringence,polarization extinction ratio,chromatic dispersion,nonlinear coefficient,and transmis...A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber(PCF) is designed.Properties of birefringence,polarization extinction ratio,chromatic dispersion,nonlinear coefficient,and transmission are studied by using the multipole method,the finite-difference beam propagation method,and the adaptive split-step Fourier method.Considering that the zero dispersion wavelength of our proposed fiber is about 4 μm,we have analysed the mechanism of spectral broadening in PCFs with different pitches in detail,with femtosecond pulses at a wavelength of 4 μm as the pump pulses.Especially,mid-infrared broadband polarized supercontinuums are obtained in a 3-cm PCF with an optimal pitch of 2 μm.Their spectral width at 20 dB reaches up to 12 μm.In the birefringent PCF,we find that the supercontinuum generation changes with the pump alignment angle.Research results show that no coupling between eigenpolarization modes are observed at the maximum average power(i.e.,37 mW),which indicates that the polarization state is well maintained.展开更多
In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as e...In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.展开更多
Photonic Crystal Fibers have attracted worldwideinterest within the last decade due to their uniqueoptical properties and because they exhibit a muchhigher degree of design freedom compared to conventionaloptical fibe...Photonic Crystal Fibers have attracted worldwideinterest within the last decade due to their uniqueoptical properties and because they exhibit a muchhigher degree of design freedom compared to conventionaloptical fibers.In this article, the fabricationtechnologies of photonic crystal fibers and theirapplications at home and abroad were formulated atlength, especially in the following fields, such aslarge mode area active photonic crystal fibers andfiber lasers, birefringence fibers and sensors, highnonlinear photonic crystal fibers and frequencytransformation, dispersion compensation PCFs anddispersion compensation for telecommunicationsystems, and photonic band-gap fibers. Finally, accordingto the above analysis, the prospects anddeveloping trends of photonic crystal fibers in thefuture were presented.展开更多
This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot interferometer. The responses of such FBGs to temper- ature, strain, bending, an...This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot interferometer. The responses of such FBGs to temper- ature, strain, bending, and transverse-loading were systematically investigated. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. The bending and transverse- loading properties of the FBGs are sensitive to the fiber orientations.展开更多
Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes...Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes excited by a given pump source through the experimental study of some specific fibers. A 20-W all-fiber picosecond master oscillator-power amplifier (MOPA) laser is used to pump three different kinds of photonic crystal fibers for supercontinuum generation. Three diverse supercontinuum formation processes are observed to correspond to photonie crystal fibers with distinct dis- persion properties. The experimental results are consistent with the relevant theoretical results. Based on the above analyses, a watt-level broadband white light supercontinuum source spanning from 500 nm to beyond 1700 nm is demonstrated by using a picosecond fiber laser in combination with the matched photonic crystal fiber. The limitation of the group velocity matching curve of the photonic crystal fiber is also discussed in the paper.展开更多
The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave...The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave expansion (PWE) method. By examining the out-of-plane photonic bandgaps (PBGs) of chiral PhC, a kind of chiral PCF with a hollow core is designed and their eigenstates are calculated. The distributions of mode field and polarization state are demonstrated, and how the structural asymmetry of the core together with the chirality in the background affects the modal polarization is discussed. The dependences of birefringence on chirality for different ellipticities of core are investigated.展开更多
We report supercontinuum (SC) generation in a lead silicate SF57 photonic crystal fiber by using a 1550 nm pump source. The effective nonlinear coefficient of the SF57 fiber is simulated to be 111.5 W-1 .km- 1 at 15...We report supercontinuum (SC) generation in a lead silicate SF57 photonic crystal fiber by using a 1550 nm pump source. The effective nonlinear coefficient of the SF57 fiber is simulated to be 111.5 W-1 .km- 1 at 1550 nm. The fiber also shows ultraflat dispersion from 1700 nm to 2100 nm. Our results reveal that with an increase of the average power of the incident pulse from 10 mW to 90 mW, the SC of the SF57 photonic crystal fiber is generated from 1300 nm to 1900 nm with high stability and without significant change in spectral broadening.展开更多
We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light s...We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.展开更多
We present a numerical and experimental study of the propagation characteristics of photonic crystal fibers(PCFs)selectively filled with ionic liquid(IL;1-butyl-3-methylimidazolium iodine).Three types of IL-filled PCF...We present a numerical and experimental study of the propagation characteristics of photonic crystal fibers(PCFs)selectively filled with ionic liquid(IL;1-butyl-3-methylimidazolium iodine).Three types of IL-filled PCF are investigated:one with all air holes filled,one with an IL-filled air hole in the second ring,and one with an IL-filled air hole in the third ring.The results show that the third type of IL-filled PCF is the most sensitive to temperature;the sensitivity of resonant dips between the LP01 and LP21 modes is−2.9 nm/XC.Moreover,the intensity of the resonant dips changes with the polarization angle of the light source;the sensitivity is−0.79 dB per unit polarization angle.Based on this property,IL-filled PCFs with different utilities can be realized by changing the filling position flexibly.Consequently,IL-filled PCFs can be used under flexible conditions and controllable temperatures to create a compact polarization-angle sensor.展开更多
As a new type optical fiber,because of its particular optical properties,photonic crystal fibers(PCFs) have attracted the academic and industrial field widespread attention.So,the researches about PCFs have made great...As a new type optical fiber,because of its particular optical properties,photonic crystal fibers(PCFs) have attracted the academic and industrial field widespread attention.So,the researches about PCFs have made great progress in recent decade.In this paper,two kinds of PCFs constructions are numerically investigated and its leakage-loss properties are simulated.Based on the results of calculations,both the two types of PCFs are fabricated using glass capillary tube stacking.And the process of fiber drawing is described in this paper.展开更多
Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show th...Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.展开更多
This paper focuses on the investigation of modal characteristics and sensing properties of long period grating photonic crystal fibers (LPG-PCFs). An improved effective index method is employed with an objective to st...This paper focuses on the investigation of modal characteristics and sensing properties of long period grating photonic crystal fibers (LPG-PCFs). An improved effective index method is employed with an objective to study its limitations for various designs of LPG-PCFs. Results so obtained with the above method are compared with the corresponding values of multiple multipole (MMP) method results which points the range of validity and applicability of the improved effective index method to LPG-PCFs. It is shown that this method is excellent when the surrounding media is assumed to be air. However, it becomes less accurate when the fiber is immersed into a liquid with a refractive index close to that of the cladding.展开更多
We demonstrate the use of photonic crystal fiber (PCF) joined in between two single mode fibers (SMF) as a concentration sensor. To realize this, one micrometer length PCF of hexagonal lattice is sandwiched between tw...We demonstrate the use of photonic crystal fiber (PCF) joined in between two single mode fibers (SMF) as a concentration sensor. To realize this, one micrometer length PCF of hexagonal lattice is sandwiched between two SMF having one micrometer length each. To maximize the coupling between SMF and PCF, the core diameters are made equal. Then the output from a given input through this structure is analyzed with respect to different concentrations in the air holes of PCF using Finite Difference Time Domain (FDTD) method. It is found that the variation of electric field intensity at the output is linear with respect to concentration of alcohol.展开更多
Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of g...Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of graduate acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result large intensity robust light structures can propagate over significant distances. In the spectral domain fusion-like processes result in development of a new significant band at the long wavelength side of the spectrum.展开更多
A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was ...A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.展开更多
This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly p...This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly polarized and radially polarized modes because the sensing performance of the sensor based on both modes is relatively high, which will be useful for selecting the modes to make the detection accurately. The sharp single resonant peaks of the linearly polarized mode and radially polarized mode, are stronger and more sensitive to the variation of analyte refractive index than that of any other polarized mode in this kind of photonic crystal fiber. For linearly polarized mode and radially polarized mode, the maximum sensitivities of 10448.5nm per refractive index unit and 8230.7nm per refractive index unit can be obtained, as well as 949.8 and 791.4 for figure of merits in the sensing range of 1.33-1.45, respectively. Compared with the conventional Au-metalized surface plasmon resonance sensors, our device is better and can be applied as a biosensor.展开更多
High power supercontinuum generation has witnessed rapid developments during the past few years. The mecha- nism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous...High power supercontinuum generation has witnessed rapid developments during the past few years. The mecha- nism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous wave pump regime and the pulsed pump regime. The challenges in scaling the average power of supereontinuum generation are analyzed. Some of our works on high power supercontinuum generation are summarized, and perspectives for the future development are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.61505175 and 61475134)the Natural Science Foundation of Hebei Province,China(Grant Nos.F2017203110 and F2017203193)
文摘Surface plasmon resonance induced tunable polarization filters based on nanoscale gold film-coated photonic crystal fibers were proposed and analyzed. The characteristics of the polarization filter were calculated by finite element method (FEM). The gold film was selectively coated on the inner wall of one cladding air hole which was located near the fiber core along the y-axis direction. When the phase of core fundamental mode and surface plasmon polaritons (SPPs) mode matches, the two modes couple with each other intensely. Numerical results show that the resonance wavelength and strength vary with fiber structural parameters and the index of the infilling liquid. The fiber parameters were optimized to achieve specific functions. Under the optimal structure, we realized a dual channel filter at the communication wavelength of 1.31 μm and 1.55 μm fory polarization direction and x polarization direction. Then a single channel polarized filter at the communication wavelength of 1.55 μm is also achieved by adjusting the refractive index of the infilling liquid. The proposed polarization filters realized dual channel filtering and single channel filtering simultaneously under the same structure for the first time to the best of our knowledge.
基金the National High Technology Research and Development Program of China(Grant No.2011AA030203)the National Natural Science Foundation of China(Grant No.61250017)the Key Research Program of the Chinese Academy Sciences(Grant No.KJZD-EW-W02)
文摘The supercontinuum (SC) generation in all-normal dispersion (ANDi) photonic-crystal fiber (PCF) pumped by high power picosecond pulses are investigated in this paper. Our results show that an octave SC may be achieved by pumping the ANDi PCF with picosecond pump pulses. However, the PCF length required may have to be lengthened to several tens of centimeters, which is much longer than that with femtosecond pump pulses. The relatively long PCF gives rise to much higher Raman gain and stronger Raman frequency shift compared to those with femtosecond pump pulses, which in turn not only cause a distorted temporal waveform and an un-flattened spectrum, but also severely degrade the coherence of the generated SC.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61178026 and 60978028)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20091333110010)the Natural Science Foundation of Hebei Province,China(Grant No.F2009000481)
文摘A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber(PCF) is designed.Properties of birefringence,polarization extinction ratio,chromatic dispersion,nonlinear coefficient,and transmission are studied by using the multipole method,the finite-difference beam propagation method,and the adaptive split-step Fourier method.Considering that the zero dispersion wavelength of our proposed fiber is about 4 μm,we have analysed the mechanism of spectral broadening in PCFs with different pitches in detail,with femtosecond pulses at a wavelength of 4 μm as the pump pulses.Especially,mid-infrared broadband polarized supercontinuums are obtained in a 3-cm PCF with an optimal pitch of 2 μm.Their spectral width at 20 dB reaches up to 12 μm.In the birefringent PCF,we find that the supercontinuum generation changes with the pump alignment angle.Research results show that no coupling between eigenpolarization modes are observed at the maximum average power(i.e.,37 mW),which indicates that the polarization state is well maintained.
文摘In this study, Octagonal Photonic Crystal Fiber (O-PCF) structures are designed for different air filling fractions with fixed pitch length of 2.2 μm. The light propagating characteristics of PCF structures such as effective refractive index, confinement loss, chromatic dispersion mode effective area and nonlinear coefficient are numerically analyzed. The simulation results show that the fibers have dispersion flattened, ultra-low loss highly nonlinear nature in the wavelength region 1.3 μm to 1.7 μm.
基金supported by the National Basic Research Program of China(973 Program)under the grant NO.2003CB3 14905the Hi-tech Research and Development Program of China(863 Program)under the grant NO.2007AA03Z447
文摘Photonic Crystal Fibers have attracted worldwideinterest within the last decade due to their uniqueoptical properties and because they exhibit a muchhigher degree of design freedom compared to conventionaloptical fibers.In this article, the fabricationtechnologies of photonic crystal fibers and theirapplications at home and abroad were formulated atlength, especially in the following fields, such aslarge mode area active photonic crystal fibers andfiber lasers, birefringence fibers and sensors, highnonlinear photonic crystal fibers and frequencytransformation, dispersion compensation PCFs anddispersion compensation for telecommunicationsystems, and photonic band-gap fibers. Finally, accordingto the above analysis, the prospects anddeveloping trends of photonic crystal fibers in thefuture were presented.
基金supported by the Alexander von Humboldt Foundation, the National Science Foundation of China under Grant No. 60507013, and the Thuringian Ministry of Education and Cultural Affairs.
文摘This paper reports fiber Bragg gratings (FBGs) inscribed in a small-core Ge-doped photonic crystal fibers with a UV laser and a Talbot interferometer. The responses of such FBGs to temper- ature, strain, bending, and transverse-loading were systematically investigated. The Bragg wavelength of the FBGs shifts toward longer wavelengths with increasing temperature, tensile strain, and transverse-loading. The bending and transverse- loading properties of the FBGs are sensitive to the fiber orientations.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.61235008)the Postgraduate Innovation Foundation of National University of Defense Technology,China(Grant No.B110704)
文摘Picosecond pulse pumped supercontinuum generation in photonic crystal fiber is investigated by performing a series of comparative experiments. The main purpose is to investigate the supercontinuum generation processes excited by a given pump source through the experimental study of some specific fibers. A 20-W all-fiber picosecond master oscillator-power amplifier (MOPA) laser is used to pump three different kinds of photonic crystal fibers for supercontinuum generation. Three diverse supercontinuum formation processes are observed to correspond to photonie crystal fibers with distinct dis- persion properties. The experimental results are consistent with the relevant theoretical results. Based on the above analyses, a watt-level broadband white light supercontinuum source spanning from 500 nm to beyond 1700 nm is demonstrated by using a picosecond fiber laser in combination with the matched photonic crystal fiber. The limitation of the group velocity matching curve of the photonic crystal fiber is also discussed in the paper.
基金Project supported by the National Natural Science Foundation of China(Grant No.60977032)
文摘The theoretical study of dielectric-chiral photonic crystal fiber (PCF) with an elliptical hollow core is presented. The band structure of chiral photonic crystal (PhC) is calculated by using a modified plane-wave expansion (PWE) method. By examining the out-of-plane photonic bandgaps (PBGs) of chiral PhC, a kind of chiral PCF with a hollow core is designed and their eigenstates are calculated. The distributions of mode field and polarization state are demonstrated, and how the structural asymmetry of the core together with the chirality in the background affects the modal polarization is discussed. The dependences of birefringence on chirality for different ellipticities of core are investigated.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61178026 and 60978028)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20091333110010)+1 种基金the Natural Science Foundation of Hebei Province, China (Grant No. E2012203035)the NCRIS, Australia
文摘We report supercontinuum (SC) generation in a lead silicate SF57 photonic crystal fiber by using a 1550 nm pump source. The effective nonlinear coefficient of the SF57 fiber is simulated to be 111.5 W-1 .km- 1 at 1550 nm. The fiber also shows ultraflat dispersion from 1700 nm to 2100 nm. Our results reveal that with an increase of the average power of the incident pulse from 10 mW to 90 mW, the SC of the SF57 photonic crystal fiber is generated from 1300 nm to 1900 nm with high stability and without significant change in spectral broadening.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10674051 and 10811120010)the Program for Innovative Research Team of the Higher Education of Guangdong, China (Grant No 06CXTD005)
文摘We investigate numerically and experimentally the modification of the spontaneous emission rate for micrometersized light sources embedded in a hollow-core photonic crystal fiber (HCPCF). The diameter of the light source is deliberately chosen such that they could be easily introduced into the central hole of the hollow-core photonic crystal fiber by capillary force. The photoluminescence from the microparticles is measured by using an inverted microscope in combination with a spectrometer. The modification of the spontaneous emission rate is observed in a wavelength region where there is no band gap. The experimental observations are consistent with the simulation results obtained by the plane wave expansion and finite-difference time-domain techniques.
基金supported partly by the National Natural Science Foundation of China(Grant Nos.11804171,11674177,and 61775107)partly by the Natural Science Foundation of Tianjin,China(Grant No.16JCZDJC31000)partly by the Self-made Experiment Teaching Instrument Project of Nankai University 2018(Grant No.2018NKZZYQ04).
文摘We present a numerical and experimental study of the propagation characteristics of photonic crystal fibers(PCFs)selectively filled with ionic liquid(IL;1-butyl-3-methylimidazolium iodine).Three types of IL-filled PCF are investigated:one with all air holes filled,one with an IL-filled air hole in the second ring,and one with an IL-filled air hole in the third ring.The results show that the third type of IL-filled PCF is the most sensitive to temperature;the sensitivity of resonant dips between the LP01 and LP21 modes is−2.9 nm/XC.Moreover,the intensity of the resonant dips changes with the polarization angle of the light source;the sensitivity is−0.79 dB per unit polarization angle.Based on this property,IL-filled PCFs with different utilities can be realized by changing the filling position flexibly.Consequently,IL-filled PCFs can be used under flexible conditions and controllable temperatures to create a compact polarization-angle sensor.
文摘As a new type optical fiber,because of its particular optical properties,photonic crystal fibers(PCFs) have attracted the academic and industrial field widespread attention.So,the researches about PCFs have made great progress in recent decade.In this paper,two kinds of PCFs constructions are numerically investigated and its leakage-loss properties are simulated.Based on the results of calculations,both the two types of PCFs are fabricated using glass capillary tube stacking.And the process of fiber drawing is described in this paper.
基金Natural Science Basic Research Project for Education Depart ment of Henan Province(2007140010)
文摘Using the quantum invariant theory and unitary transformation means, we study the influences of multi-photon nonlinear Compton scattering on the photon polarization in photonic crystal fibers(PCF). The results show that the photon polarization of the incident photon changes a lot due to scattered optical, and its general geometric phase factor, Hamiton number and evolution operator are definited both by the incident and scattered optical.
文摘This paper focuses on the investigation of modal characteristics and sensing properties of long period grating photonic crystal fibers (LPG-PCFs). An improved effective index method is employed with an objective to study its limitations for various designs of LPG-PCFs. Results so obtained with the above method are compared with the corresponding values of multiple multipole (MMP) method results which points the range of validity and applicability of the improved effective index method to LPG-PCFs. It is shown that this method is excellent when the surrounding media is assumed to be air. However, it becomes less accurate when the fiber is immersed into a liquid with a refractive index close to that of the cladding.
文摘We demonstrate the use of photonic crystal fiber (PCF) joined in between two single mode fibers (SMF) as a concentration sensor. To realize this, one micrometer length PCF of hexagonal lattice is sandwiched between two SMF having one micrometer length each. To maximize the coupling between SMF and PCF, the core diameters are made equal. Then the output from a given input through this structure is analyzed with respect to different concentrations in the air holes of PCF using Finite Difference Time Domain (FDTD) method. It is found that the variation of electric field intensity at the output is linear with respect to concentration of alcohol.
文摘Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between co-propagating solitons with small temporal and wavelengths separation. The mechanism of graduate acceleration of trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic crystal fibers. As a result large intensity robust light structures can propagate over significant distances. In the spectral domain fusion-like processes result in development of a new significant band at the long wavelength side of the spectrum.
基金Project supported by the National Natural Science Foundation of China(Grant No.61475029)
文摘A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high bire- fringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89x10-2 and very high nonlinear coefficient of 102.69 W-1 .km 1. In particular, there were two zero-dispersion wave- lengths (ZDWs) in the visible (X: 640-720 nm and Y: 730-760 nm) and near-infrared regions (X: 1050-1606 nm and Y: 850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.
基金the National Natural Science Foundation of China(Grant Nos.61178026 and 60978028)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20091333110010)the Natural Science Foundation of Hebei Province,China(Grant No.E2012203035)
文摘This paper presents a theoretical study on a photonic crystal fiber plasmonic refractive index biosensor. The proposed photonic crystal fiber sensor introduces the concept of simultaneous detection with the linearly polarized and radially polarized modes because the sensing performance of the sensor based on both modes is relatively high, which will be useful for selecting the modes to make the detection accurately. The sharp single resonant peaks of the linearly polarized mode and radially polarized mode, are stronger and more sensitive to the variation of analyte refractive index than that of any other polarized mode in this kind of photonic crystal fiber. For linearly polarized mode and radially polarized mode, the maximum sensitivities of 10448.5nm per refractive index unit and 8230.7nm per refractive index unit can be obtained, as well as 949.8 and 791.4 for figure of merits in the sensing range of 1.33-1.45, respectively. Compared with the conventional Au-metalized surface plasmon resonance sensors, our device is better and can be applied as a biosensor.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61077076, 10904173, and 61007037)the International Technology Cooperation Program of the Technology Department, China (Grant No. 2012DFG11470)+1 种基金the Excellent Youth Foundation of Hunan Province, China (Grant No. 12JJ1010)the Fund of Innovation of NUDT, China (GrantNo. B120701)
文摘High power supercontinuum generation has witnessed rapid developments during the past few years. The mecha- nism and the latest achievements in high power supercontinuum generation are reviewed both for the continuous wave pump regime and the pulsed pump regime. The challenges in scaling the average power of supereontinuum generation are analyzed. Some of our works on high power supercontinuum generation are summarized, and perspectives for the future development are discussed.