In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.I...In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.展开更多
Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
The Chinese-Russian Workshop on Biophotonics and Biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September 2023.The bilateral workshop brought together both Russian and Chinese scientists,e...The Chinese-Russian Workshop on Biophotonics and Biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September 2023.The bilateral workshop brought together both Russian and Chinese scientists,engineers,and clinical researchers from a variety of disciplines engaged in applying optical science,photonics,and imaging technologies to problems in biology and medicine.During the workshops,two plenary lectures and twenty invited presentations were presented.This special issue selects some papers from both Russian and Chinese sides,consisting of one review and seven original research articles.展开更多
An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod...An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.展开更多
Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow ligh...Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.展开更多
Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean ...Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.展开更多
Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propo...Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.展开更多
By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surfac...By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.展开更多
Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it elimina...Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.展开更多
Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being ne...Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.展开更多
Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have bee...Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.展开更多
Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit ...Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.展开更多
We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell stru...We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.展开更多
A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefin...A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.展开更多
Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon ph...Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility,and thus makes it possible to develop large-scale programmable optical signal processors.The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors.In this paper,we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches.The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers(MZCs),four Ge/Si photodetectors,four channels of thermally-tunable optical delaylines.Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step.Particularly,these waveguide spirals used here are designed to be as wide as 2μm,enabling an ultralow propagation loss of 0.28 dB/cm.Meanwhile,these MZCs and MZSs are designed with 2-μm-wide arm waveguides,and thus the random phase errors in the MZC/MZS arms are negligible,in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly.Finally,this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities,including tunable time-delay,microwave photonic beamforming,arbitrary optical signal filtering,and arbitrary waveform generation.展开更多
Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions...Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.展开更多
Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to colle...Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases.展开更多
The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-de...The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics.展开更多
Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuro...Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing.Here,we proposed a multi-synaptic photonic SNN,combining the modified remote supervised learning with delayweight co-training to achieve pattern classification.The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations.In addition,the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber(DFB-SA),where 10 different noisy digital patterns were successfully classified.A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing,demonstrating the capability of hardware-algorithm co-computation.展开更多
For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been dem...For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.展开更多
基金the support of the National Natural Science Foundation of China(Grant No.62204201)。
文摘In the past decade,there has been tremendous progress in integrating chalcogenide phase-change materials(PCMs)on the silicon photonic platform for non-volatile memory to neuromorphic in-memory computing applications.In particular,these non von Neumann computational elements and systems benefit from mass manufacturing of silicon photonic integrated circuits(PICs)on 8-inch wafers using a 130 nm complementary metal-oxide semiconductor line.Chip manufacturing based on deep-ultraviolet lithography and electron-beam lithography enables rapid prototyping of PICs,which can be integrated with high-quality PCMs based on the wafer-scale sputtering technique as a back-end-of-line process.In this article,we present an overview of recent advances in waveguide integrated PCM memory cells,functional devices,and neuromorphic systems,with an emphasis on fabrication and integration processes to attain state-of-the-art device performance.After a short overview of PCM based photonic devices,we discuss the materials properties of the functional layer as well as the progress on the light guiding layer,namely,the silicon and germanium waveguide platforms.Next,we discuss the cleanroom fabrication flow of waveguide devices integrated with thin films and nanowires,silicon waveguides and plasmonic microheaters for the electrothermal switching of PCMs and mixed-mode operation.Finally,the fabrication of photonic and photonic–electronic neuromorphic computing systems is reviewed.These systems consist of arrays of PCM memory elements for associative learning,matrix-vector multiplication,and pattern recognition.With large-scale integration,the neuromorphic photonic computing paradigm holds the promise to outperform digital electronic accelerators by taking the advantages of ultra-high bandwidth,high speed,and energy-efficient operation in running machine learning algorithms.
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
文摘The Chinese-Russian Workshop on Biophotonics and Biomedical Optics 2023 was held online twice on 18–21 September and 25–26 September 2023.The bilateral workshop brought together both Russian and Chinese scientists,engineers,and clinical researchers from a variety of disciplines engaged in applying optical science,photonics,and imaging technologies to problems in biology and medicine.During the workshops,two plenary lectures and twenty invited presentations were presented.This special issue selects some papers from both Russian and Chinese sides,consisting of one review and seven original research articles.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12274478 and 61775244)the National Key Research and Development Program of China(Grant Nos.2021YFB2800604 and 2021YFB2800302).
文摘An all-optical Fano-like diode featuring a nonlinear lateral elliptical micro-cavity and a reflecting column in the photonic crystal waveguide is proposed.The asymmetric micro-cavity is constructed by removing one rod and changing the shape of the lateral rod from a circle to an ellipse.A reflecting pillar is also introduced into the waveguide to construct an F-P cavity with the elliptical defect and enhance the asymmetric transmission for the incident light wave transmitting rightwards and leftwards,respectively.By designing the size of the ellipse and optimizing a reflecting rod at a suitable position,a maximum forward light transmittance of-1.14 dB and a minimum backward transmittance of-57.66 dB are achieved at the working wavelength of 1550.47 nm.The corresponding response time is about 10 ps when the intensity of the pump light beam resonant at 637 nm is 3.97 W/μm2.
基金Project supported by the National Natural Science Foundation of China(Grant No.12374302)the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX0872).
文摘Topological slow light and rainbow trapping tend to rely on large-scale interface structure in previous research work,which have restricted further miniaturization.In this work,we propose a method to realize slow light and rainbow trapping at the zigzag edge of a single valley photonic crystals(VPCs)bounded by air,which is very different from previous studies where rainbow trapping is supported at the interface separating two VPCs with inversion symmetry.By constructing the VPC–air boundaries and VPC–VPC interfaces experimentally,we have observed the topologically protected rainbow trapping simultaneously at the external and internal boundary.This work provides a feasible platform for the miniaturized optical communication devices such as optical buffers,optical storage and optical routing.
基金supported by National Natural Science Foundation of China(Nos.12275065 and 11975089)Natural Science Foundation of Hebei Province(Nos.A2021201010 and A2021201003)+4 种基金Interdisciplinary Research Program of Natural Science of Hebei University(No.DXK202108)Hebei Provincial Central Government Guiding Local Science and Technology Development Funds(No.236Z1501G)Scientific Research and Innovation Team Foundation of Hebei University(No.IT2023B03)The Excellent Youth Research Innovation Team of Hebei University(No.QNTD202402)Regional Key Projects of National Natural Science Foundation of China(No.U23A20678).
文摘Archimedean photonic crystal has become a research area of great interest due to its various unique properties. Here, we experimentally demonstrate the realization of reconfigurable(4, 6^(2))and(4, 8^(2)) Archimedean plasma photonic crystals(APPCs) by use of dielectric barrier discharges in air. Dynamical control on both the macrostructures including the lattice symmetry and the crystal orientation, and the microstructures including the fine structures of scattering elements has been achieved. The formation mechanisms of APPCs are studied by time-resolved measurements together with numerical simulations. Large omnidirectional band gaps of APPCs have been obtained. The tunable topology of APPCs may offer new opportunities for fabricating multi-functional and highly-integrated microwave devices.
基金Project supported by the National Natural Science Foundation of China(Grant No.NSFC 12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology,China(Grant No.YK22-02-08)+3 种基金the Qing Lan Project of Jiangsu Province,Chinathe Postgraduate Research&Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX23_0964)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China(Grant No.ZK21-05-09)。
文摘Photonic spin Hall effect(PSHE), as a novel physical effect in light–matter interaction, provides an effective metrological method for characterizing the tiny variation in refractive index(RI). In this work, we propose a multi-functional PSHE sensor based on VO_(2), a material that can reveal the phase transition behavior. By applying thermal control, the mutual transformation into different phase states of VO_(2) can be realized, which contributes to the flexible switching between multiple RI sensing tasks. When VO_(2) is insulating, the ultrasensitive detection of glucose concentrations in human blood is achieved. When VO_(2) is in a mixed phase, the structure can be designed to distinguish between the normal cells and cancer cells through no-label and real-time monitoring. When VO_(2) is metallic, the proposed PSHE sensor can act as an RI indicator for gas analytes. Compared with other multi-functional sensing devices with the complex structures, our design consists of only one analyte and two VO_(2) layers, which is very simple and elegant. Therefore, the proposed VO_(2)-based PSHE sensor has outstanding advantages such as small size, high sensitivity, no-label, and real-time detection, providing a new approach for investigating tunable multi-functional sensors.
基金supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.12104148)the Fundamental Research Funds for the Central Universities(Grant No.531118010565).
文摘By including certain point group symmetry in the classification of band topology,Fu proposed a class of threedimensionaltopological crystalline insulators(TCIs)without spin-orbit coupling in 2011.In Fu’s model,surface states(ifpresent)doubly degenerate atГandM when time-reversal and C_(4) symmetries are preserved.The analogs of Fu’s modelwith surface states quadratically degenerate atM are widely studied,while surface states with quadratic degeneracy atГare rarely reported.In this study,we propose a three-dimensional TCI without spin-orbit coupling in a judiciously designednonsymmorphic photonic metacrystal.The surface states of photonic TCIs exhibit quadratic band degeneracy in the(001)surface Brillouin zone(BZ)center(Гpoint).The gapless surface states and their quadratic dispersion are protected by C4and time-reversal symmetries,which correspond to the nontrivial band topology characterized by Z_(2)topological invariant.Moreover,the surface states along lines fromГto the(001)surface BZ boundary exhibit zigzag feature,which is interpretedfrom symmetry perspective by building composite operators constructed by the product of glide symmetries with timereversalsymmetry.The metacrystal array surrounded with air possesses high order hinge states with electric fields highlylocalized at the hinge that may apply to optical sensors.The gapless surface states and hinge states reside in a cleanfrequency bandgap.The topological surface states emerge at the boundary of the metacrystal and perfect electric conductor(PEC),which provide a pathway for topologically manipulating light propagation in photonic devices.
基金supported by the National Key Research and Development Program of China(2022YFB2803700)the National Natural Science Foundation of China(62235002,62322501,12204021,62105008,62235003,and 62105260)+5 种基金Beijing Municipal Science and Technology Commission(Z221100006722003)Beijing Municipal Natural Science Foundation(Z210004)China Postdoctoral Science Foundation(2021T140004)Major Key Project of PCL,the Natural Science Basic Research Program of Shaanxi Province(2022 JQ-638)Young Talent fund of University Association for Science and Technology in Shaanxi,China(20220135)Young Talent fund of Xi'an Association for science and technology(095920221308).
文摘Photonic signal processing offers a versatile and promising toolkit for contemporary scenarios ranging from digital optical communication to analog microwave operation.Compared to its electronic counterpart,it eliminates inherent bandwidth limitations and meanwhile exhibits the potential to provide unparalleled scalability and flexibility,particularly through integrated photonics.However,by far the on-chip solutions for optical signal processing are often tailored to specific tasks,which lacks versatility across diverse applications.Here,we propose a streamlined chip-level signal processing architecture that integrates different active and passive building blocks in silicon-on-insulator(SOI)platform with a compact and efficient manner.Comprehensive and in-depth analyses for the architecture are conducted at levels of device,system,and application.Accompanied by appropriate configuring schemes,the photonic circuitry supports loading and processing both analog and digital signals simultaneously.Three distinct tasks are facilitated with one single chip across several mainstream fields,spanning optical computing,microwave photonics,and optical communications.Notably,it has demonstrated competitive performance in functions like image processing,spectrum filtering,and electro-optical bandwidth equalization.Boasting high universality and a compact form factor,the proposed architecture is poised to be instrumental for next-generation functional fusion systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074049 and 12347101)。
文摘Fabry–Perot(FP)modes are a class of fundamental resonances in photonic crystal(PhC)slabs.Owing to their low quality factors,FP modes are frequently considered as background fields with their resonance nature being neglected.Nevertheless,FP modes can play important roles in some phenomena,as exemplified by their coupling with guided resonance(GR)modes to achieve bound states in the continuum(BIC).Here,we further demonstrate the genuine resonance mode capability of FP modes PhC slabs.Firstly,we utilize temporal coupled-mode theory to obtain the transmittance of a PhC slab based on the FP modes.Secondly,we construct exceptional points(EPs)in both momentum and parameter spaces through the coupling of FP and GR modes.Furthermore,we identify a Fermi arc connecting two EPs and discuss the far-field polarization topology.This work elucidates that the widespread FPs in PhC slabs can serve as genuine resonant modes,facilitating the realization of desired functionalities through mode coupling.
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200403)the National Natural Science Foundation of China (Grant Nos.91950204 and 92150302)。
文摘Dynamic topological photonics is a novel research field, combining the time-domain optics and topological physics.In this review, the recent progress and realization platforms of dynamic topological photonics have been well introduced.The definition, measurement methods and the evolution process of the dynamic topological photonics are demonstrated to better understand the physical diagram. This review is meant to bring the readers a different perspective on topological photonics, grasp the advanced progress of dynamic topology, and inspire ideas about future prospects.
基金Project supported by the National Natural Science Foundation of China (Grant No.12175107)the Natural Science Foundation of Nanjing Vocational University of Industry Technology (Grant No.YK22-02-08)+2 种基金the Qing Lan Project of Jiangsu Provincethe Natural Science Foundation of Jiangsu Province of China (Grant No.BK20230347)the Fund from the Research Center of Industrial Perception and Intelligent Manufacturing Equipment Engineering of Jiangsu Province,China (Grant No.ZK21-05-09)。
文摘Metal-based surface plasmon resonance(SPR)plays an important role in enhancing the photonic spin Hall effect(SHE)and developing sensitive optical sensors.However,the very large negative permittivities of metals limit their applications beyond the near-infrared regime.In this work,we theoretically present a new mechanism to enhance the photonic SHE by taking advantage of SiC-supported surface phonon resonance(SPhR)in the mid-infrared regime.The transverse displacement of photonic SHE is very sensitive to the wavelength of incident light and the thickness of SiC layer.Under the optimal parameter setup,the calculated largest transverse displacement of SiC-based SPhR structure reaches up to 163.8 ym,which is much larger than the condition of SPR.Moreover,an NO_(2) gas sensor based on the SPhR-enhanced photonic SHE is theoretically proposed with the superior sensing performance.Both the intensity and angle sensitivity of this sensor can be effectively manipulated by varying the damping rate of SiC.The results may provide a promising paradigm to enhance the photonic SHE in the mid-infrared region and open up new opportunity of highly sensitive refractive index sensors.
基金Project supported by the Suzhou Basic Research Project (Grant No.SJC2023003)Suzhou City University National Project Pre-research Project (Grant No.2023SGY014)。
文摘We present a stable valley photonic crystal(VPC)unit cell with C_(3v)symmetric quasi-ring-shaped dielectric columns and realize its topological phase transition by breaking mirror symmetry.Based on this unit cell structure,topological edge states(TESs)and topological corner states(TCSs)are realized.We obtain a new type of wave transmission mode based on photonic crystal zipper-like boundaries and apply it to a beam splitter assembled from rectangular photonic crystals(PCs).The constructed beam splitter structure is compact and possesses frequency separation functions.In addition,we construct a box-shaped triangular PC structures with zipper-like boundaries and discover phenomena of TCSs in the corners,comparing its corner states with those formed by other boundaries.Based on this,we explore the regularities of the electric field patterns of TESs and TCSs,explain the connection between the characteristic frequencies and locality of TCSs,which helps better control photons and ensures low power consumption of the system.
基金supported by the Open Fund of the State Key Laboratory of Advanced Optical Communication Systems and Networks (SJTU)(Grant No. 2023GZKF018)the Open Fund of IPOC (BUPT)(Grant No. IPOC2021B03)+4 种基金the National Natural Science Foundation of China (NSFC)(Grant No. 11974188)the China Postdoctoral Science Foundation (Grant Nos. 2021T140339 and 2018M632345)the Jiangsu Province Postdoctoral Science Foundation (Grant No. 2021K617C)the Postgraduate Research and Practice Innovation Program of Jiangsu Province (Grant No.KYCX22_0945)the Qing Lan Project of Jiangsu Province
文摘A photonic crystal nanobeam cavity(M-PCNC)with a structure incorporating a mixture of diamond-shaped and circular air holes is pro-posed.The performance of the cavity is simulated and studied theoretically.Using thefinite-difference time-domain method,the parameters of the M-PCNC,including cavity thickness and width,lattice constant,and radii and numbers of holes,are optimized,with the quality factor Q and mode volume Vm as performance indicators.Mutual modulation of the lattice constant and hole radius enable the proposed M-PCNC to realize outstanding performance.The optimized cavity possesses a high quality factor Q 1.45105 and an ultra-small mode=×volume Vm 0.01(λ/n)[Zeng et al.,Opt Lett 2023:48;3981–3984]in the telecommunications wavelength range.Light can be progres-=sively squeezed in both the propagation direction and the perpendicular in-plane direction by a series of interlocked anti-slots and slots in the diamond-shaped hole structure.Thereby,the energy can be confined within a small mode volume to achieve an ultra-high Q/Vm ratio.
基金We are grateful for financial supports from National Major Research and Development Program(No.2018YFB2200200)National Science Fund for Distinguished Young Scholars(61725503)+1 种基金Zhejiang Provincial Natural Science Foundation(LZ18F050001,LGF21F050003)National Natural Science Foundation of China(NSFC)(91950205,6191101294,11861121002,61905209,62175214,62111530147).
文摘Chip-scale programmable optical signal processors are often used to flexibly manipulate the optical signals for satisfying the demands in various applications,such as lidar,radar,and artificial intelligence.Silicon photonics has unique advantages of ultra-high integration density as well as CMOS compatibility,and thus makes it possible to develop large-scale programmable optical signal processors.The challenge is the high silicon waveguides propagation losses and the high calibration complexity for all tuning elements due to the random phase errors.In this paper,we propose and demonstrate a programmable silicon photonic processor for the first time by introducing low-loss multimode photonic waveguide spirals and low-random-phase-error Mach-Zehnder switches.The present chip-scale programmable silicon photonic processor comprises a 1×4 variable power splitter based on cascaded Mach-Zehnder couplers(MZCs),four Ge/Si photodetectors,four channels of thermally-tunable optical delaylines.Each channel consists of a continuously-tuning phase shifter based on a waveguide spiral with a micro-heater and a digitally-tuning delayline realized with cascaded waveguide-spiral delaylines and MZSs for 5.68 ps time-delay step.Particularly,these waveguide spirals used here are designed to be as wide as 2μm,enabling an ultralow propagation loss of 0.28 dB/cm.Meanwhile,these MZCs and MZSs are designed with 2-μm-wide arm waveguides,and thus the random phase errors in the MZC/MZS arms are negligible,in which case the calibration for these MZSs/MZCs becomes easy and furthermore the power consumption for compensating the phase errors can be reduced greatly.Finally,this programmable silicon photonic processor is demonstrated successfully to verify a number of distinctively different functionalities,including tunable time-delay,microwave photonic beamforming,arbitrary optical signal filtering,and arbitrary waveform generation.
基金financial supports from National Key Research and Development Program of China (2021YFB2801900,2021YFB2801901,2021YFB2801902,2021YFB2801904)National Natural Science Foundation of China (No.61974177)+1 种基金National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (62022062)The Fundamental Research Funds for the Central Universities (QTZX23041).
文摘Neuromorphic photonic computing has emerged as a competitive computing paradigm to overcome the bottlenecks of the von-Neumann architecture.Linear weighting and nonlinear spike activation are two fundamental functions of a photonic spiking neural network(PSNN).However,they are separately implemented with different photonic materials and devices,hindering the large-scale integration of PSNN.Here,we propose,fabricate and experimentally demonstrate a photonic neuro-synaptic chip enabling the simultaneous implementation of linear weighting and nonlinear spike activation based on a distributed feedback(DFB)laser with a saturable absorber(DFB-SA).A prototypical system is experimentally constructed to demonstrate the parallel weighted function and nonlinear spike activation.Furthermore,a fourchannel DFB-SA laser array is fabricated for realizing matrix convolution of a spiking convolutional neural network,achieving a recognition accuracy of 87%for the MNIST dataset.The fabricated neuro-synaptic chip offers a fundamental building block to construct the large-scale integrated PSNN chip.
基金supported by the National Key Research and Development Project(No.2021YFA1201400)National Natural Science Foundation of China(Nos.52073222,51573144 and 21474078)the Fundamental Research Funds for the Central Universities(WUT:2021IVA118 and 2022IVA201).
文摘Micro/nanorobots can propel and navigate in many hard-to-reach biological environments,and thus may bring revolutionary changes to biomedical research and applications.However,current MNRs lack the capability to collectively perceive and report physicochemical changes in unknown microenvironments.Here we propose to develop swarming responsive photonic nanorobots that can map local physicochemical conditions on the fly and further guide localized photothermal treatment.The RPNRs consist of a photonic nanochain of periodically-assembled magnetic Fe_(3)O_(4)nanoparticles encapsulated in a responsive hydrogel shell,and show multiple integrated functions,including energetic magnetically-driven swarming motions,bright stimuli-responsive structural colors,and photothermal conversion.Thus,they can actively navigate in complex environments utilizing their controllable swarming motions,then visualize unknown targets(e.g.,tumor lesion)by collectively mapping out local abnormal physicochemical conditions(e.g.,pH,temperature,or glucose concentra-tion)via their responsive structural colors,and further guide external light irradiation to initiate localized photothermal treatment.This work facilitates the development of intelligent motile nanosensors and versatile multifunctional nanotheranostics for cancer and inflam-matory diseases.
基金supported by the General Research Fund(17200222,17208919,17204020)of the Research Grants Council of Hong Kongthe National Natural Science Foundation of China/Research Grants Council Joint Research Scheme(N_HKU743/22)the Seed Fund for Basic Research(201910159047,202111159097)of the University Research Committee(URC),The University of Hong Kong。
文摘The continual demand for modern optoelectronics with a high integration degree and customized functions has increased requirements for nanofabrication methods with high resolution,freeform,and mask-free.Meniscus-on-demand three-dimensional(3D)printing is a high-resolution additive manufacturing technique that exploits the ink meniscus formed on a printer nozzle and is suitable for the fabrication of micro/nanoscale 3D architectures.This method can be used for solution-processed 3D patterning of materials at a resolution of up to100 nm,which provides an excellent platform for fundamental scientific studies and various practical applications.This review presents recent advances in meniscus-on-demand 3D printing,together with historical perspectives and theoretical background on meniscus formation and stability.Moreover,this review highlights the capabilities of meniscus-on-demand 3D printing in terms of printable materials and potential areas of application,such as electronics and photonics.
基金supports from the National Key Research and Development Program of China (Nos.2021YFB2801900,2021YFB2801901,2021YFB2801902,2021YFB2801903,2021YFB2801904)the National Outstanding Youth Science Fund Project of National Natural Science Foundation of China (No.62022062)+1 种基金the National Natural Science Foundation of China (No.61974177)the Fundamental Research Funds for the Central Universities (No.QTZX23041).
文摘Spiking neural networks(SNNs)utilize brain-like spatiotemporal spike encoding for simulating brain functions.Photonic SNN offers an ultrahigh speed and power efficiency platform for implementing high-performance neuromorphic computing.Here,we proposed a multi-synaptic photonic SNN,combining the modified remote supervised learning with delayweight co-training to achieve pattern classification.The impact of multi-synaptic connections and the robustness of the network were investigated through numerical simulations.In addition,the collaborative computing of algorithm and hardware was demonstrated based on a fabricated integrated distributed feedback laser with a saturable absorber(DFB-SA),where 10 different noisy digital patterns were successfully classified.A functional photonic SNN that far exceeds the scale limit of hardware integration was achieved based on time-division multiplexing,demonstrating the capability of hardware-algorithm co-computation.
基金Project supported by the National Key Research and Development Program of the Ministry of Science and Technology of China(Grant No.2022YFA1404201)the National Natural Science Foundation of China(Grant No.11904255)the Key Research and Development Program of Shanxi Province(International Cooperation)(Grant No.201903D421052).
文摘For all-optical communication and information processing,it is necessary to develop all-optical logic gates based on photonic structures that can directly perform logic operations.All-optical logic gates have been demonstrated based on conventional waveguides and interferometry,as well as photonic crystal structures.Nonetheless,any defects in those structures will introduce high scattering loss,which compromises the fidelity and contrast ratio of the information process.Based on the spin-valley locking effect that can achieve defect-immune unidirectional transmission of topological edge states in valley photonic crystals(VPCs),we propose a high-performance all-optical logic OR gate based on a VPC structure.By tuning the working bandwidth of the two input channels,we prevent interference between the two channels to achieve a stable and high-fidelity output.The transmittance of both channels is higher than 0.8,and a high contrast ratio of 28.8 dB is achieved.Moreover,the chirality of the logic gate originated from the spin-valley locking effect allows using different circularly polarized light as inputs,representing“1”or“0”,which is highly desired in quantum computing.The device’s footprint is 18μm×12μm,allowing high-density on-chip integration.In addition,this design can be experimentally fabricated using current nanofabrication techniques and will have potential applications in optical communication,information processing,and quantum computing.