Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst.Four different photoinitiators such as benzoin m...Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst.Four different photoinitiators such as benzoin methyl ether,Irgacure 819,Irgacure 1700 and Irgacure 1800 were comparatively used in the reaction solution in the presence and absence of sodium dodecyl sulfate.The above eight solutions were respectively irradiated at 365 nm for 5?10 min in each capillary(75 μm inside diameter) to prepare the porous monolithic sol-gel column by a one-step,in situ,process.The chromatographic behavior of the eight PSG columns were comparatively studied,all of which exhibit reversed-phase character.Using these columns,several neutral compounds,namely thiourea,benzene,toluene,ethyl benzene,biphenyl and naphthalene can be separated from mixtures with a largest column efficiency of 74 470 plate/column for thiourea.Addition of sodium dodecyl sulfate in the polymerization process has a significant influence on the morphology and migration time.展开更多
Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and...Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and has been approved by the Food and Drug Administration as Generally Recognized as Safe [2]. However, the violent crosslinking reaction and unstable structure at the wound site limit its clinical applications. Hence, we report a biocompatible and injectable composite hydrogel methacrylate alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine (NPG)-initiated composite hydrogel (AEC) composed of photocrosslinkable alginate, viscosity modifiers and novel white light photoinitiator, namely Eosin Y/NPG system, for instant hemorrhage control.展开更多
Mask image projection-based vat photopolymerization(MIP-VPP)offers advantages like low cost,high resolution,and a wide material range,making it popular in industry and education.Recently,MIP-VPP employing liquid cryst...Mask image projection-based vat photopolymerization(MIP-VPP)offers advantages like low cost,high resolution,and a wide material range,making it popular in industry and education.Recently,MIP-VPP employing liquid crystal displays(LCDs)has gained traction,increasingly replacing digital micromirror devices,particularly among hobbyists and in educational settings,and is now beginning to be used in industrial environments.However,LCD-based MIP-VPPsuffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and itsdirect-contact configuration in MIP-VPP machines,leading to rough surfaces on the 3D-printed parts.Here,we propose a vibration-assisted MIP-VPP method that utilizes a microscalevibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform.By maintaining the same fabrication speed,our technique generates asmoother,non-pixelated mask image,reducing the roughness on flat surfaces and boundary segments of 3D-printed parts.Through light intensity modeling and simulation,we derived an optimal vibration pattern for LCD mask images,subsequently validated by experiments.We assessed the surface texture,boundary integrity,and dimensional accuracy of componentsproduced using the vibration-assisted approach.The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP,enabling its promisingapplications in sectors like the production of 3D-printed optical devices and others.展开更多
Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.H...Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.展开更多
Owing to the special fo rmation of photopolymerized hydrogels,they can effectively control the formation of hydrogels in space and time.Moreover,the photopolymerized hydrogels have mild formation conditions and biocom...Owing to the special fo rmation of photopolymerized hydrogels,they can effectively control the formation of hydrogels in space and time.Moreover,the photopolymerized hydrogels have mild formation conditions and biocompatibility;therefore,they can be widely used in tissue engineering.With the development and application of manufacturing technology,photopolymerized hydrogels can be widely used in cell encapsulation,scaffold materials,and other tissue engineering fields through more elaborate manufacturing methods.This review covers the types of photoinitiators,manu facturing technologies for photopolymerized hydrogels as well as the materials used,and a summary of the applications of photopolymerized hydrogels in tissue engineering.展开更多
The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention ha...The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production.展开更多
Fritless packed silica gel columns were prepared using sol-gel technology, The part of a 75 μm i.d. capillary was filled with a mixture of methacryloxypropyltrimethoxysilane, toluene and hydrochloric acid. Four diffe...Fritless packed silica gel columns were prepared using sol-gel technology, The part of a 75 μm i.d. capillary was filled with a mixture of methacryloxypropyltrimethoxysilane, toluene and hydrochloric acid. Four different photoinitiators such as benzoin methyl ether, Irgacure 819, Irgacure 1700 and Irgacure 1800 were added in the presence or absence of sodium dodecyl sulfate during the polymerization process. The above eight solutions were irradiated at 365 nm about 5-10 min to prepare the porous monolithic sol-gel columns by a one-step process.展开更多
A benzophenone derivative photoinitiator, HBP-TDI-HQ-TDI-HBP (HTCTH), was synthesized based on 4-hydroxy benzophenone (HBP), toluene-2,4-diisocyanate (TDI) and hydroquinone (HQ). HTCTH was a more effective pho...A benzophenone derivative photoinitiator, HBP-TDI-HQ-TDI-HBP (HTCTH), was synthesized based on 4-hydroxy benzophenone (HBP), toluene-2,4-diisocyanate (TDI) and hydroquinone (HQ). HTCTH was a more effective photoinitiator which had longer wavelength absorption in the UV-vis absorption spectra than the low molecular counterpart benzophenone (BP). It showed that both rate of polymerization (Rp) and final conversion (P) increased with increase of amine and HTCTH concentration in photopolymerization.展开更多
The photoinduced bulk polymerization of a reactive-hindered amine light stabilizers (r-HALS), 4-acryloyl-2, 2, 6,6-tetramethylpiperidinyl (ATMP), was performed at 80 C by using a DPC technique. An unique periodic expo...The photoinduced bulk polymerization of a reactive-hindered amine light stabilizers (r-HALS), 4-acryloyl-2, 2, 6,6-tetramethylpiperidinyl (ATMP), was performed at 80 C by using a DPC technique. An unique periodic exponential attenuation-type oscillating curve was found when the polymerization was carried out in air, but this phenomenon was not found in nitrogen. It is supposed that this unique kinetic performance may be attributed to nitroxyl radicals that are produced in situ from the oxidation of ATMP. ATMP polymer with narrow polydispersity (d = 1.03) can be obtained by photoinduced solution polymerization of ATMP. The signal detected in ESR may be assigned to the nitroxyl radicals in the matrix of ATMP polymer. Since this kind of recycling of nitroxyl radicals is well documented for the photostabilizing mechanism of HALS, the present results may serve as a kinetic evidence for this mechanism.展开更多
A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies n...A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm^2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.展开更多
Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indi...Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.展开更多
A novel acrylic monomer bearing aromatic ethereality group N-(p -phenoxy-phenyl) methacrylamide(MAPOA) was synthesized and polymerized. The fluorescence spectra of MAPOA and its polymer were studied, showing that the ...A novel acrylic monomer bearing aromatic ethereality group N-(p -phenoxy-phenyl) methacrylamide(MAPOA) was synthesized and polymerized. The fluorescence spectra of MAPOA and its polymer were studied, showing that the polymer displays a stronger fluorescence than its monomer at the same chromophore concentration. The fluorescence of P(MAPOA) was quenched by adding electron deficiency monomers such as MMA, AN etc .. It is another example of showing the 'fluorescence structural self-quenching effect' as we reported previously, from which it is demonstrated again that this phenomenon is not an accidental one but a common effect for acrylic monomers bearing electon-donating chromophores. The photopolymerization of AN sensitized by MAPOA and P(MAPOA) was studied. The kinetic equation of the polymerization was obtained and represented as follows: R _p∝ 0.38 × 0.78 , R _p∝ 0.33 × 0.71 The overall activation energies were determined to be E_ a =24\^22 kJ/mol(MAPOA) and E_ a =26\^31 kJ/mol respectively. The fluorescence analysis of the resulted P(AN) showed that the sensitizer also entered into the P(AN) chains. A mechanism of the formation of a charge transfer complex and free radical initiation was suggested for the photopolymerization of AN sensitized by MAPOA and P(MAPOA).展开更多
The effects of postthermal treatment and irradiation time on the structure and thermal stability of TiO2/polyacrylate nanocomposites by a sol-gel process in reverse micelles and subsequent rapid photopolymerization we...The effects of postthermal treatment and irradiation time on the structure and thermal stability of TiO2/polyacrylate nanocomposites by a sol-gel process in reverse micelles and subsequent rapid photopolymerization were investigated, and the hybrid films were characterized by thermal gravimetry analysis (TGA), X-ray photoelectron spectrum (XPS), and atomic force microscopy (AFM). XPS data suggested that the prolongation of irradiation time and the postthermal treatment promoted titania formation, with the former affecting more remarkably. TGA data showed that TiO2-hybrid films could upgrade the decomposition onset temperature (Tonset) as well as the temperature at which there is a maximum mass loss rate (Tmax). AFM data demonstrated that the inorganic titania particles with a mean diameter of 25.26-28.84 nm were homogeneously distributed in the organic matrix.展开更多
Dodecyl-benzophenone(DBP) and hexadecoxyl-benzophenone(HDBP) as type 11 photoinitiators used for radical photopolymerization systems were synthesized by Friedel-Crafts reaction, and characterized by 1H NMR and FTI...Dodecyl-benzophenone(DBP) and hexadecoxyl-benzophenone(HDBP) as type 11 photoinitiators used for radical photopolymerization systems were synthesized by Friedel-Crafts reaction, and characterized by 1H NMR and FTIR spectroscopy. The UV-Vis absorption spectra of DBP and HDBP, propitious to photopolymerization under a commercial mercury UV bulb are centered at 345 and 335 nm, respectively. HDBP has higher extinction coefficient than DBP, but lower photoinitiating efficiency. Their photoinitiating performances for EB605, a bisphenol A epoxy acrylate with 40%(mass fraction) tripropyleneglycol diacrylate (TPGDA), resin consisting of bisphenol A epoxy acrylate and tripropyleneglycol diacrylate in the presence of triethanolamine as a coinitiator were investigated by photo-differential scanning calorimetry(photo-DSC). DBP initiates the curing of acrylate more efficiently than HDBP, showing higher photopolymerization rate and unsaturation conversion, resulted from the poor compatibility of HDBP with the resin. The photoinitiating activity of DBP to epoxy acrylate resin is even higher than that of BP at lower loadings.展开更多
The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, ...The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O-2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.展开更多
With the aim of developing a low-cost and efficient visible-light-driven photocatalyst for radical polymerization,iron-chelating polyimide networks(Fe@MPI)was fabricated by firstly synthesizing photoactive melamine-co...With the aim of developing a low-cost and efficient visible-light-driven photocatalyst for radical polymerization,iron-chelating polyimide networks(Fe@MPI)was fabricated by firstly synthesizing photoactive melamine-containing polyimide(MPI)networks and then incorporating Fe(III)cations into the polymer networks.Fe@MPI exhibits a wide absorption spectrum ranging from 220 to 1250 nm and 3.5 times higher photocurrent intensity as compared with the pristine MPI.Based on its excellent photo-electric properties,Fe@MPI was employed as a recyclable heterogeneous catalyst,providing sufficient activity for the visible-light driven radical polymerization to synthesize poly(methyl methacrylate)with molecular weight up to 31.×10^4 g mol.Taking advantage of the heterogeneous nature of the catalyst,Fe@MPI could be facilely regenerated from the polymerization solution by filtration without an obvious loss of its activity.This research provides a novel recyclable catalyst for visible-light driven radical polymerization.展开更多
A monolithic molecularly imprinted polymer with specific recognition ability for 4-hydroxybenzoic acid (4-HBA) was prepared by in situ photopolymerization, using methacrylic acid (MAA) as a functional monomer, ethylen...A monolithic molecularly imprinted polymer with specific recognition ability for 4-hydroxybenzoic acid (4-HBA) was prepared by in situ photopolymerization, using methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking agent, toluene and isooctane as porogenic solvents and Irgacure 1800 as an initiator. Baseline separation of isomers of hydroxybenzoic acid was achieved in less than 8 min on this monolithic column using 4-HBA as template, but not on the blank polymer. Furthermore, some neutral compounds could also be baseline-separated on the imprinted polymer column in the mode of pressure-driven capillary electrochromatography.展开更多
In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibilit...In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibility of improving the holographic characteristics of the material through the dark enhancement is demonstrated. The optimal preillumination exposure and the optimal time interval between exposures are extracted to obtain the optimized diffraction efficiency, and their values are 3.4×103 mJ/cm2 and 2 min, respectively. The dark enhancement of the multiplexed grating is presented as an effective method to improve the response region and the dynamic range and to prevent saturation of the material. The dependence of the phenanthrenequinone concentration on the increment of the refractive index modulation is quantitatively studied, which provides a significant basis for improving the homogeneity in the multiplexed gratings using a quantitative strategy. Finally, a simple experimental procedure using the dark enhancement is introduced to improve the homogeneity of the diffraction efficiency and to avoid the complex schedule exposure.展开更多
Photopolymerization of propargyl acetate (PAT) with Michler's ketone (MK) asphotoinitiator in benzene has been investigated for the first time. Some features of the PATphotopolymerization with MK as photoinitiator...Photopolymerization of propargyl acetate (PAT) with Michler's ketone (MK) asphotoinitiator in benzene has been investigated for the first time. Some features of the PATphotopolymerization with MK as photoinitiator is described.展开更多
The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy(RT-FTIR).The consumption rates of epoxy group and oxeta...The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy(RT-FTIR).The consumption rates of epoxy group and oxetane group as a function of time were obtained by monitoring of the absorption peaks in the 789 cm-1 and 981 cm-1.The effect of accelerators type and the accelerating mechanism were discussed.In general,benzyl alcohol and its analogues with electron-donating substituents are useful accelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane.Activated monomer mechanism and free-radical chain-induced decomposition of onium salt cationic photoinitiator account for the observed accelerating effect on the polymerization rate.展开更多
基金Project(20611140646) supported by the NSFC-KOSEF Scientific Cooperation Program project(2006HANCET-01) supported by Program for New Century Talents of University of Henan Provinceproject(2005-461-140) supported by Program for Backbone Teacher in Henan Province
文摘Photopolymerized sol-gel(PSG) columns were prepared using methacryloxypropyltrimethoxysilane as the monomer,toluene as the porogen and hydrochloric acid as the catalyst.Four different photoinitiators such as benzoin methyl ether,Irgacure 819,Irgacure 1700 and Irgacure 1800 were comparatively used in the reaction solution in the presence and absence of sodium dodecyl sulfate.The above eight solutions were respectively irradiated at 365 nm for 5?10 min in each capillary(75 μm inside diameter) to prepare the porous monolithic sol-gel column by a one-step,in situ,process.The chromatographic behavior of the eight PSG columns were comparatively studied,all of which exhibit reversed-phase character.Using these columns,several neutral compounds,namely thiourea,benzene,toluene,ethyl benzene,biphenyl and naphthalene can be separated from mixtures with a largest column efficiency of 74 470 plate/column for thiourea.Addition of sodium dodecyl sulfate in the polymerization process has a significant influence on the morphology and migration time.
基金National Key Research and Development Program(2022YFA1104604,2017YFC1103303)Science Fund for National Defense Distinguished Young Scholars(2022-JCJQ-ZQ-016)+2 种基金National Nature Science Foundation of China(32000969,82002056,92268206)Military Medical Research Projects(145AKJ260015000X,2022-JCJQ-ZD-096-00)Key Support Program for Growth Factor Research(SZYZ-TR-03).
文摘Dear Editor,Timely and effective hemostasis is of great significance for reducing body damage and mortality of patients [1]. Alginate is generally considered to be an excellent hemostatic polymer-based biomaterial and has been approved by the Food and Drug Administration as Generally Recognized as Safe [2]. However, the violent crosslinking reaction and unstable structure at the wound site limit its clinical applications. Hence, we report a biocompatible and injectable composite hydrogel methacrylate alginate (Alg-AEMA)-based Eosin Y/N-phenylglycine (NPG)-initiated composite hydrogel (AEC) composed of photocrosslinkable alginate, viscosity modifiers and novel white light photoinitiator, namely Eosin Y/NPG system, for instant hemorrhage control.
文摘Mask image projection-based vat photopolymerization(MIP-VPP)offers advantages like low cost,high resolution,and a wide material range,making it popular in industry and education.Recently,MIP-VPP employing liquid crystal displays(LCDs)has gained traction,increasingly replacing digital micromirror devices,particularly among hobbyists and in educational settings,and is now beginning to be used in industrial environments.However,LCD-based MIP-VPPsuffers from pronounced pixelated aliasing arising from LCD’s discrete image pixels and itsdirect-contact configuration in MIP-VPP machines,leading to rough surfaces on the 3D-printed parts.Here,we propose a vibration-assisted MIP-VPP method that utilizes a microscalevibration to uniformize the light intensity distribution of the LCD-based mask image on VPP’s building platform.By maintaining the same fabrication speed,our technique generates asmoother,non-pixelated mask image,reducing the roughness on flat surfaces and boundary segments of 3D-printed parts.Through light intensity modeling and simulation,we derived an optimal vibration pattern for LCD mask images,subsequently validated by experiments.We assessed the surface texture,boundary integrity,and dimensional accuracy of componentsproduced using the vibration-assisted approach.The notably smoother surfaces and improved boundary roughness enhance the printing quality of MIP-VPP,enabling its promisingapplications in sectors like the production of 3D-printed optical devices and others.
基金the financial support from the National Key Research and Development Program of China(2022YFB4600101)the National Natural Science Foundation of China(52175201,52005484,and 52205228)+6 种基金the Research Program of Science and Technology Department of Gansu Province(21YF5FA139 and 22JR5RA107)the Shandong Provincial Natural Science Foundation(ZR2023OE090)the Major Program(ZYFZFX-2)the Cooperation Foundation for Young Scholars(HZJJ23-02)of the Lanzhou Institute of Chemical Physics,CASthe Western Light Project,CAS(xbzg-zdsys-202007)the Taishan Scholars Programthe Oasis Scholar of Shihezi University。
文摘Hydrogels inevitably undergo dehydration,structural collapse,and shrinkage deformation due to the uninterrupted evaporation in the atmosphere,thereby losing their flexibility,slipperiness,and manufacturing precision.Here,we propose a novel bioinspired strategy to construct a spontaneously formed‘skin’on the slippery hydrogels by incorporating biological stress metabolites trehalose into the hydrogel network,which can generate robust hydrogen bonding interactions to restrain water evaporation.The contents of trehalose in hydrogel matrix can also regulate the desiccation-tolerance,mechanical properties,and lubricating performance of slippery hydrogels in a wide range.Combining vat photopolymerization three-dimensional printing and trehalose-modified slippery hydrogels enables to achieve the structural hydrogels with high resolution,shape fidelity,and sophisticated architectures,instead of structural collapse and shrinkage deformation caused by dehydration.And thus,this proposed functional hydrogel adapts to manufacture large-scale hydrogels with sophisticated architectures in a long-term process.As a proof-of-concept demonstration,a high-precision and sophisticated slippery hydrogel vascular phantom was easily fabricated to imitate guidewire intervention.Additionally,the proposed protocol is universally applicable to diverse types of hydrogel systems.This strategy opens up a versatile methodology to fabricate dry-resistant slippery hydrogel for functional structures and devices,expanding their high-precision processing and broad applications in the atmosphere.
基金financially supported by the National Natural Science Fund for Distinguished Young Scholars(No.31525009)the National Natural Science Foundation of China(Nos.31930067,31771096)+1 种基金the National Key Research and Development Program of China(No.2017YFC1103502)1·3·5 Project for Disciplines of Excellence,West China Hospital,Sichuan University(No.ZYGD18002)。
文摘Owing to the special fo rmation of photopolymerized hydrogels,they can effectively control the formation of hydrogels in space and time.Moreover,the photopolymerized hydrogels have mild formation conditions and biocompatibility;therefore,they can be widely used in tissue engineering.With the development and application of manufacturing technology,photopolymerized hydrogels can be widely used in cell encapsulation,scaffold materials,and other tissue engineering fields through more elaborate manufacturing methods.This review covers the types of photoinitiators,manu facturing technologies for photopolymerized hydrogels as well as the materials used,and a summary of the applications of photopolymerized hydrogels in tissue engineering.
基金The support provided by the German Federal Ministry of Education and Research(BMBF)within the project“Benchbatt”(03XP0047B)is gratefully acknowledged.
文摘The solvent-free in situ polymerization technique has the potential to tailor-make conformal interfaces that are essential for developing durable and safe lithium metal polymer batteries(LMPBs).Hence,much attention has been given to the eco-friendly and rapid ultraviolet(UV)-induced in situ photopolymerization process to prepare solid-state polymer electrolytes.In this respect,an innovative method is proposed here to overcome the challenges of UV-induced photopolymerization(UV-curing)in the zones where UV-light cannot penetrate,especially in LMPBs where thick electrodes are used.The proposed frontal-inspired photopolymerization(FIPP)process is a diverged frontal-based technique that uses two classes(dual)of initiators to improve the slow reaction kinetics of allyl-based monomers/oligomers by at least 50%compared with the conventional UV-curing process.The possible reaction mechanism occurring in FIPP is demonstrated using density functional theory calculations and spectroscopic investigations.Indeed,the initiation mechanism identified for the FIPP relies on a photochemical pathway rather than an exothermic propagating front forms during the UV-irradiation step as the case with the classical frontal photopolymerization technique.Besides,the FIPP-based in situ cell fabrication using dual initiators is advantageous over both the sandwich cell assembly and conventional in situ photopolymerization in overcoming the limitations of mass transport and active material utilization in high energy and high power LMPBs that use thick electrodes.Furthermore,the LMPB cells fabricated using the in situ-FIPP process with high mass loading LiFePO_(4)electrodes(5.2 mg cm^(-2))demonstrate higher rate capability,and a 50%increase in specific capacity against a sandwich cell encouraging the use of this innovative process in large-scale solid-state battery production.
文摘Fritless packed silica gel columns were prepared using sol-gel technology, The part of a 75 μm i.d. capillary was filled with a mixture of methacryloxypropyltrimethoxysilane, toluene and hydrochloric acid. Four different photoinitiators such as benzoin methyl ether, Irgacure 819, Irgacure 1700 and Irgacure 1800 were added in the presence or absence of sodium dodecyl sulfate during the polymerization process. The above eight solutions were irradiated at 365 nm about 5-10 min to prepare the porous monolithic sol-gel columns by a one-step process.
基金the National Natural Science Foundation of China(No.50473024)for its financial support.
文摘A benzophenone derivative photoinitiator, HBP-TDI-HQ-TDI-HBP (HTCTH), was synthesized based on 4-hydroxy benzophenone (HBP), toluene-2,4-diisocyanate (TDI) and hydroquinone (HQ). HTCTH was a more effective photoinitiator which had longer wavelength absorption in the UV-vis absorption spectra than the low molecular counterpart benzophenone (BP). It showed that both rate of polymerization (Rp) and final conversion (P) increased with increase of amine and HTCTH concentration in photopolymerization.
基金the National Natural Science Foundation of China(No.20274023)key project foundation of National Ministry of Education(No.02114)Guangdong Province Natural Science Foundation of China(No.021241)for supporting this work.
文摘The photoinduced bulk polymerization of a reactive-hindered amine light stabilizers (r-HALS), 4-acryloyl-2, 2, 6,6-tetramethylpiperidinyl (ATMP), was performed at 80 C by using a DPC technique. An unique periodic exponential attenuation-type oscillating curve was found when the polymerization was carried out in air, but this phenomenon was not found in nitrogen. It is supposed that this unique kinetic performance may be attributed to nitroxyl radicals that are produced in situ from the oxidation of ATMP. ATMP polymer with narrow polydispersity (d = 1.03) can be obtained by photoinduced solution polymerization of ATMP. The signal detected in ESR may be assigned to the nitroxyl radicals in the matrix of ATMP polymer. Since this kind of recycling of nitroxyl radicals is well documented for the photostabilizing mechanism of HALS, the present results may serve as a kinetic evidence for this mechanism.
文摘A new polyvinylalcohol-based photopolymeric holographic recording material has been developed. The recording is obtained by the copolymerization of acrylamide and N-hydroxymethyl acrylamide. Diffraction efficiencies near 50% are obtained with energetic exposure of 80mJ/cm^2. N-hydroxymethyl acrylamide can improve the optical quality of the film. With the increase of the concentration of N-hydroxymethyl acrylamide, the flatness of the film increases, scattering reduces and the straight image is clearer with a small distortion. The postexposure effect on the grating is also studied. The diffraction efficiency of grating increases further during postexposure, gradient of monomer exists after exposure.
基金This work was supported by the Scientific Research Foundation for Youth(No.QN0404).
文摘Photoinitiated inverse emulsion polymerization of sodium acrylate(AANa)in kerosene was carried out at room orlower temperature,using 2,2-dimethoxy-2-phenylacetophenone(DMPA)as the initiator.Kinetic investigations indicated thatthe polymerization could be completed in about 30 min and produce polymer with high molecular weight(10~6~10~7).It wasfound that monomer droplets are the main sites for the polymerization(nucleation).With the increase of DMPAconcentration,polymerization rate(R_p)reaches a maximum value while molecular weight of the produced polymer has anadverse result,but the dependence of R_p on incident light intensity is similar.Influences of other parameters such asmonomer concentration,emulsifier content and reaction temperature,etc.were also studied.At lower pH values of waterphase,R_p depends strongly on the pH due to the electrostatic interaction between the ionized radicals and the monomer.Athigher pH,R_p shows a slight dependence on pH.
文摘A novel acrylic monomer bearing aromatic ethereality group N-(p -phenoxy-phenyl) methacrylamide(MAPOA) was synthesized and polymerized. The fluorescence spectra of MAPOA and its polymer were studied, showing that the polymer displays a stronger fluorescence than its monomer at the same chromophore concentration. The fluorescence of P(MAPOA) was quenched by adding electron deficiency monomers such as MMA, AN etc .. It is another example of showing the 'fluorescence structural self-quenching effect' as we reported previously, from which it is demonstrated again that this phenomenon is not an accidental one but a common effect for acrylic monomers bearing electon-donating chromophores. The photopolymerization of AN sensitized by MAPOA and P(MAPOA) was studied. The kinetic equation of the polymerization was obtained and represented as follows: R _p∝ 0.38 × 0.78 , R _p∝ 0.33 × 0.71 The overall activation energies were determined to be E_ a =24\^22 kJ/mol(MAPOA) and E_ a =26\^31 kJ/mol respectively. The fluorescence analysis of the resulted P(AN) showed that the sensitizer also entered into the P(AN) chains. A mechanism of the formation of a charge transfer complex and free radical initiation was suggested for the photopolymerization of AN sensitized by MAPOA and P(MAPOA).
文摘The effects of postthermal treatment and irradiation time on the structure and thermal stability of TiO2/polyacrylate nanocomposites by a sol-gel process in reverse micelles and subsequent rapid photopolymerization were investigated, and the hybrid films were characterized by thermal gravimetry analysis (TGA), X-ray photoelectron spectrum (XPS), and atomic force microscopy (AFM). XPS data suggested that the prolongation of irradiation time and the postthermal treatment promoted titania formation, with the former affecting more remarkably. TGA data showed that TiO2-hybrid films could upgrade the decomposition onset temperature (Tonset) as well as the temperature at which there is a maximum mass loss rate (Tmax). AFM data demonstrated that the inorganic titania particles with a mean diameter of 25.26-28.84 nm were homogeneously distributed in the organic matrix.
基金Supported by the National Natural Science Foundation of China(No50973100)
文摘Dodecyl-benzophenone(DBP) and hexadecoxyl-benzophenone(HDBP) as type 11 photoinitiators used for radical photopolymerization systems were synthesized by Friedel-Crafts reaction, and characterized by 1H NMR and FTIR spectroscopy. The UV-Vis absorption spectra of DBP and HDBP, propitious to photopolymerization under a commercial mercury UV bulb are centered at 345 and 335 nm, respectively. HDBP has higher extinction coefficient than DBP, but lower photoinitiating efficiency. Their photoinitiating performances for EB605, a bisphenol A epoxy acrylate with 40%(mass fraction) tripropyleneglycol diacrylate (TPGDA), resin consisting of bisphenol A epoxy acrylate and tripropyleneglycol diacrylate in the presence of triethanolamine as a coinitiator were investigated by photo-differential scanning calorimetry(photo-DSC). DBP initiates the curing of acrylate more efficiently than HDBP, showing higher photopolymerization rate and unsaturation conversion, resulted from the poor compatibility of HDBP with the resin. The photoinitiating activity of DBP to epoxy acrylate resin is even higher than that of BP at lower loadings.
基金This work was supported by the National Natural Science Foundation of China (No. 59773011).
文摘The photosensitive initiating system composed of 7-diethylamino-3-(2'-benzimidazolyl)coumarin dye (DEDC) and diphenyliodonium hexafluorophosphate (DIHP) which act as the sensitizer and the initiator respectively, can be used to initiate the polymerization of methyl methacrylate (MMA). The results showed that when exposed to visible light, coumarin dye/iodonium salt undergoes quick electron transfer from DEDC to DIHP and free radicals are produced. The visible light photoinduced reaction between DEDC and DIHP is mainly through the excited singlet state of DEDC and thus it is a little sensitive to O-2. The influence of concentration of DEDC, DIHP and MMA on the rate of photopolymerization of MMA was also investigated.
文摘With the aim of developing a low-cost and efficient visible-light-driven photocatalyst for radical polymerization,iron-chelating polyimide networks(Fe@MPI)was fabricated by firstly synthesizing photoactive melamine-containing polyimide(MPI)networks and then incorporating Fe(III)cations into the polymer networks.Fe@MPI exhibits a wide absorption spectrum ranging from 220 to 1250 nm and 3.5 times higher photocurrent intensity as compared with the pristine MPI.Based on its excellent photo-electric properties,Fe@MPI was employed as a recyclable heterogeneous catalyst,providing sufficient activity for the visible-light driven radical polymerization to synthesize poly(methyl methacrylate)with molecular weight up to 31.×10^4 g mol.Taking advantage of the heterogeneous nature of the catalyst,Fe@MPI could be facilely regenerated from the polymerization solution by filtration without an obvious loss of its activity.This research provides a novel recyclable catalyst for visible-light driven radical polymerization.
文摘A monolithic molecularly imprinted polymer with specific recognition ability for 4-hydroxybenzoic acid (4-HBA) was prepared by in situ photopolymerization, using methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linking agent, toluene and isooctane as porogenic solvents and Irgacure 1800 as an initiator. Baseline separation of isomers of hydroxybenzoic acid was achieved in less than 8 min on this monolithic column using 4-HBA as template, but not on the blank polymer. Furthermore, some neutral compounds could also be baseline-separated on the imprinted polymer column in the mode of pressure-driven capillary electrochromatography.
基金supported by the National Basic Research Program of China(Grant No.2007CB3070001)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.2010009)+1 种基金the Program of Excellent Team in Harbin Institute of Technology,Chinathe Research Startup Foundation of Civil Aviation University of China(Grant No.2010QN03X)
文摘In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibility of improving the holographic characteristics of the material through the dark enhancement is demonstrated. The optimal preillumination exposure and the optimal time interval between exposures are extracted to obtain the optimized diffraction efficiency, and their values are 3.4×103 mJ/cm2 and 2 min, respectively. The dark enhancement of the multiplexed grating is presented as an effective method to improve the response region and the dynamic range and to prevent saturation of the material. The dependence of the phenanthrenequinone concentration on the increment of the refractive index modulation is quantitatively studied, which provides a significant basis for improving the homogeneity in the multiplexed gratings using a quantitative strategy. Finally, a simple experimental procedure using the dark enhancement is introduced to improve the homogeneity of the diffraction efficiency and to avoid the complex schedule exposure.
文摘Photopolymerization of propargyl acetate (PAT) with Michler's ketone (MK) asphotoinitiator in benzene has been investigated for the first time. Some features of the PATphotopolymerization with MK as photoinitiator is described.
基金Natural Science Foundation of Hubei Province of China(No.2005ABA181)National Innovation Fund for Small Technology-based Firms(No.05C26214201059)
文摘The photopolymerization kinetics of cycloaliphatic epoxide and oxetane with accelerators were investigated with Real-time Fourier transform infrared spectroscopy(RT-FTIR).The consumption rates of epoxy group and oxetane group as a function of time were obtained by monitoring of the absorption peaks in the 789 cm-1 and 981 cm-1.The effect of accelerators type and the accelerating mechanism were discussed.In general,benzyl alcohol and its analogues with electron-donating substituents are useful accelerators for the cationic polymerization of cycloaliphatic epoxide and oxetane.Activated monomer mechanism and free-radical chain-induced decomposition of onium salt cationic photoinitiator account for the observed accelerating effect on the polymerization rate.