Biological neurons can receive inputs and capture a variety of external stimuli,which can be encoded and transmitted as different electric signals.Thus,the membrane potential is adjusted to activate the appropriate fi...Biological neurons can receive inputs and capture a variety of external stimuli,which can be encoded and transmitted as different electric signals.Thus,the membrane potential is adjusted to activate the appropriate firing modes.Indeed,reliable neuron models should take intrinsic biophysical effects and functional encoding into consideration.One fascinating and important question is the physical mechanism for the transcription of external signals.External signals can be transmitted as a transmembrane current or a signal voltage for generating action potentials.We present a photosensitive neuron model to estimate the nonlinear encoding and responses of neurons driven by external optical signals.In the model,a photocell(phototube)is used to activate a simple FitzHugh-Nagumo(FHN)neuron,and then external optical signals(illumination)are imposed to excite the photocell for generating a time-varying current/voltage source.The photocell-coupled FHN neuron can therefore capture and encode external optical signals,similar to artificial eyes.We also present detailed bifurcation analysis for estimating the mode transition and firing pattern selection of neuronal electrical activities.The sampled time series can reproduce the main characteristics of biological neurons(quiescent,spiking,bursting,and even chaotic behaviors)by activating the photocell in the neural circuit.These results could be helpful in giving possible guidance for studying neurodynamics and applying neural circuits to detect optical signals.展开更多
基金Project supported by the National Natural Science Foundation of China(No.11672122)the Hongliu First-Class Disciplines Development Program of Lanzhou University of Technology,China。
文摘Biological neurons can receive inputs and capture a variety of external stimuli,which can be encoded and transmitted as different electric signals.Thus,the membrane potential is adjusted to activate the appropriate firing modes.Indeed,reliable neuron models should take intrinsic biophysical effects and functional encoding into consideration.One fascinating and important question is the physical mechanism for the transcription of external signals.External signals can be transmitted as a transmembrane current or a signal voltage for generating action potentials.We present a photosensitive neuron model to estimate the nonlinear encoding and responses of neurons driven by external optical signals.In the model,a photocell(phototube)is used to activate a simple FitzHugh-Nagumo(FHN)neuron,and then external optical signals(illumination)are imposed to excite the photocell for generating a time-varying current/voltage source.The photocell-coupled FHN neuron can therefore capture and encode external optical signals,similar to artificial eyes.We also present detailed bifurcation analysis for estimating the mode transition and firing pattern selection of neuronal electrical activities.The sampled time series can reproduce the main characteristics of biological neurons(quiescent,spiking,bursting,and even chaotic behaviors)by activating the photocell in the neural circuit.These results could be helpful in giving possible guidance for studying neurodynamics and applying neural circuits to detect optical signals.