This study examined the photostabilization of Azadirachtin-A (Aza-A) when exposed to ultraviolet light in the presence of some natural absorbers. Aza-A extract solutions with and without natural UV light absorbers i...This study examined the photostabilization of Azadirachtin-A (Aza-A) when exposed to ultraviolet light in the presence of some natural absorbers. Aza-A extract solutions with and without natural UV light absorbers in methanol were applied onto the surface of glass slides. At particular intervals, the remaining concentration of Aza-A was analyzed by HPLC. Using first-order kinetic equation, the dissipation half-life values (DT^0) for the degradation of Aza-A under ultraviolet radiation were obtained. It indicated that the addition of ferulic acid, gallic acid, and rutin provided moderate degree of photostabilization of Aza-A and that addition of aloin provided the best photostabilization of Aza-A, among these UV absorbers studied. Photostabilization of Aza-A by different UV light absorbers appears to be due to the competitive energy absorption of UV photons by the absorbers molecules. The dissipation half-life values of Aza-A after irradiation under ultraviolet light suggested that the addition of aloin (in 1 : 1 mol ratio) can provide better photostabilization of azadirachtin molecule.展开更多
基金This project was supported by the National Natural Science Foundation of China(30500387)Natural Science Foundation of Jiangsu Province,China(BK2005008).
文摘This study examined the photostabilization of Azadirachtin-A (Aza-A) when exposed to ultraviolet light in the presence of some natural absorbers. Aza-A extract solutions with and without natural UV light absorbers in methanol were applied onto the surface of glass slides. At particular intervals, the remaining concentration of Aza-A was analyzed by HPLC. Using first-order kinetic equation, the dissipation half-life values (DT^0) for the degradation of Aza-A under ultraviolet radiation were obtained. It indicated that the addition of ferulic acid, gallic acid, and rutin provided moderate degree of photostabilization of Aza-A and that addition of aloin provided the best photostabilization of Aza-A, among these UV absorbers studied. Photostabilization of Aza-A by different UV light absorbers appears to be due to the competitive energy absorption of UV photons by the absorbers molecules. The dissipation half-life values of Aza-A after irradiation under ultraviolet light suggested that the addition of aloin (in 1 : 1 mol ratio) can provide better photostabilization of azadirachtin molecule.