Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions dur...Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions during anionic redox reactions lead to poor electrochemical performance with sluggish kinetics.Here, we propose a synergy of Li-Cu cations in harnessing the full potential of oxygen redox, through Li displacement and suppressed phase transition in P3-type layered oxide cathode. P3-type Na_(0.7)[Li_(0.1)Cu_(0.2)Mn_(0.7)]O_(2) cathode delivers a large specific capacity of ~212 mA h g^(-1)at 15 mA g^(-1). The discharge capacity is maintained up to ~90% of the initial capacity after 100 cycles, with stable occurrence of the oxygen redox in the high-voltage region. Through advanced experimental analyses and first-principles calculations, it is confirmed that a stepwise redox reaction based on Cu and O ions occurs for the charge-compensation mechanism upon charging. Based on a concrete understanding of the reaction mechanism, the Li displacement by the synergy of Li-Cu cations plays a crucial role in suppressing the structural change of the P3-type layered material under the oxygen redox reaction, and it is expected to be an effective strategy for stabilizing the oxygen redox in the layered oxides of Na-ion batteries.展开更多
Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the req...Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.展开更多
Molecular motions of the luminescent liquid crystals(LLCs)show a significant effect on fluorescent emission and heat generation.In this article,a series of cyanostilbene-based LLCs(CSs:CS1-6,CS1-12,CS2-6 and CS2-12)ar...Molecular motions of the luminescent liquid crystals(LLCs)show a significant effect on fluorescent emission and heat generation.In this article,a series of cyanostilbene-based LLCs(CSs:CS1-6,CS1-12,CS2-6 and CS2-12)are synthesized to investigate how the pho-toluminescence and photothermal effect balanced.Among these materials,the mesogens peripheried by single alkyl chains formed enantiotropic nematic(CS1-6)or smectic C(CS1-12)phase with different alkyl tail lengths.When the single aliphatic chain is re-placed by mini-dendrons,room temperature(RT)monotropic hexagonal columnar phase(CS2-12)or molecular liquid(CS2-6)is formed.The results revealed that all these materials exhibited high efficiency emission with the highest quantum yield reaching 59.0%.The photoluminescence and photothermal effect can be effectively tuned by dispersing CSs into a commercially available RT liquid crystal matrix 8CB,which output significantly improved photothermal conversion efficiency of 63.2%.Furthermore,the pho-tothermal can rapidly trigger the Smectic A-Nematic-Isotropic sequence transitions of 8CB doped with CSs.This work paves a way of adjusting the balance of photoluminescence and photothermal properties of the LLC materials.展开更多
基金supported by the National Research Foundation of Korea grant funded by the Korea government (NRF2021R1A2C1014280)the Fundamental Research Program of the Korea Institute of Material Science (PNK9370)。
文摘Oxygen redox is considered a new paradigm for increasing the practical capacity and energy density of the layered oxide cathodes for Na-ion batteries. However, severe local structural changes and phase transitions during anionic redox reactions lead to poor electrochemical performance with sluggish kinetics.Here, we propose a synergy of Li-Cu cations in harnessing the full potential of oxygen redox, through Li displacement and suppressed phase transition in P3-type layered oxide cathode. P3-type Na_(0.7)[Li_(0.1)Cu_(0.2)Mn_(0.7)]O_(2) cathode delivers a large specific capacity of ~212 mA h g^(-1)at 15 mA g^(-1). The discharge capacity is maintained up to ~90% of the initial capacity after 100 cycles, with stable occurrence of the oxygen redox in the high-voltage region. Through advanced experimental analyses and first-principles calculations, it is confirmed that a stepwise redox reaction based on Cu and O ions occurs for the charge-compensation mechanism upon charging. Based on a concrete understanding of the reaction mechanism, the Li displacement by the synergy of Li-Cu cations plays a crucial role in suppressing the structural change of the P3-type layered material under the oxygen redox reaction, and it is expected to be an effective strategy for stabilizing the oxygen redox in the layered oxides of Na-ion batteries.
基金support from the National Natural Science Foundation of China(No.22175079)support from the National Natural Science Foundation of China(No.22205087)+2 种基金the Open Project Program of Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry,Jiangxi University of Science and Technology(No.20212BCD42018)National Natural Science Foundation of China(No.22275075)Natural Science Foundation of Jiangxi Province(Nos.20204BCJ22015 and 20202ACBL203001).
文摘Ferroelastic hybrid perovskite materials have been revealed the significance in the applications of switches,sensors,actuators,etc.However,it remains a challenge to design high-temperature ferroelastic to meet the requirements for the practical applications.Herein,we reported an one-dimensional organicinorganic hybrid perovskites(OIHP)(3-methylpyrazolium)CdCl_(3)(3-MBCC),which possesses a mmmF2/m ferroelastic phase transition at 263 K.Moreover,utilizing crystal engineering,we replace-CH_(3) with-NH_(2) and-H,which increases the intermolecular force between organic cations and inorganic frameworks.The phase transition temperature of(3-aminopyrazolium)CdCl_(3)(3-ABCC),and(pyrazolium)CdCl_(3)(BCC)increased by 73 K and 10 K,respectively.Particularly,BCC undergoes an unconventional inverse temperature symmetry breaking(ISTB)ferroelastic phase transition around 273 K.Differently,it transforms from a high symmetry low-temperature paraelastic phase(point group 2/m)to a low symmetry high-temperature ferroelastic phase(point group ī)originating from the rare mechanism of displacement of organic cations phase transition.It means that crystal BCC retains in ferroelastic phase above 273 K until melting point(446 K).Furthermore,characteristic ferroelastic domain patterns on crystal BCC are confirmed with polarized optical microscopy.Our study enriches the molecular mechanism of ferroelastics in the family of organic-inorganic hybrids and opens up a new avenue for exploring high-temperature ferroic materials.
基金supported bythe National Natural ScienceFoundation of China(Nos.21875143and21875157)the InnovationResearch Foundationof Shenzhen(No.JCYJ20180507182229597)the Natural Science Foundation of Guangdong Province(No.2016-A030312002)and theopen foundation of State Key Laboraatory of Chemical Engineering(No.SKL ChE-20B04).
文摘Molecular motions of the luminescent liquid crystals(LLCs)show a significant effect on fluorescent emission and heat generation.In this article,a series of cyanostilbene-based LLCs(CSs:CS1-6,CS1-12,CS2-6 and CS2-12)are synthesized to investigate how the pho-toluminescence and photothermal effect balanced.Among these materials,the mesogens peripheried by single alkyl chains formed enantiotropic nematic(CS1-6)or smectic C(CS1-12)phase with different alkyl tail lengths.When the single aliphatic chain is re-placed by mini-dendrons,room temperature(RT)monotropic hexagonal columnar phase(CS2-12)or molecular liquid(CS2-6)is formed.The results revealed that all these materials exhibited high efficiency emission with the highest quantum yield reaching 59.0%.The photoluminescence and photothermal effect can be effectively tuned by dispersing CSs into a commercially available RT liquid crystal matrix 8CB,which output significantly improved photothermal conversion efficiency of 63.2%.Furthermore,the pho-tothermal can rapidly trigger the Smectic A-Nematic-Isotropic sequence transitions of 8CB doped with CSs.This work paves a way of adjusting the balance of photoluminescence and photothermal properties of the LLC materials.