The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ...The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are s...Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources.However,there are challenges in building models through centralized shared data due to data privacy concerns and industry competition.Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally.In this paper,we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model.We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach.Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy,and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.展开更多
The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ...In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.展开更多
A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there ...A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical m...In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.展开更多
A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV indus...A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance.展开更多
面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损...面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损失,采用直流压缩机和储能电池,并在兰州地区对系统的运行性能开展了实验测试。研究结果表明,PV/T系统的光伏板温度相比传统PV组件温度平均降低12.26℃,平均发电效率相对提升8.1%。在将24.4~27.2℃的水加热到50.1~50.7℃的过程中,平均性能系数(coefficient of performance,COP)可达到5.48,相比传统空气源热泵热水器提高82.1%~106.8%。平均集热效率和综合效率分别为37.30%和71.24%,PV/T系统的发电量和耗电量分别为3.33kWh和1.69kWh,发电量相比PV系统提高5.7%。太阳能PV/T光储直驱热电联产系统可以减少建筑部门的能源消耗,并提升PV/T系统的发电效率和综合效率,在晴天条件下可以实现离网运行。展开更多
Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the ...Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms.展开更多
Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challeng...Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits.Existing PV forecasting techniques(sequential and convolutional neural networks(CNN))are sensitive to environmental conditions,reducing energy distribution system performance.To handle these issues,this article proposes an efficient,weather-resilient convolutional-transformer-based network(CT-NET)for accurate and efficient PV power forecasting.The network consists of three main modules.First,the acquired PV generation data are forwarded to the pre-processing module for data refinement.Next,to carry out data encoding,a CNNbased multi-head attention(MHA)module is developed in which a single MHA is used to decode the encoded data.The encoder module is mainly composed of 1D convolutional and MHA layers,which extract local as well as contextual features,while the decoder part includes MHA and feedforward layers to generate the final prediction.Finally,the performance of the proposed network is evaluated using standard error metrics,including the mean squared error(MSE),root mean squared error(RMSE),and mean absolute percentage error(MAPE).An ablation study and comparative analysis with several competitive state-of-the-art approaches revealed a lower error rate in terms of MSE(0.0471),RMSE(0.2167),and MAPE(0.6135)over publicly available benchmark data.In addition,it is demonstrated that our proposed model is less complex,with the lowest number of parameters(0.0135 M),size(0.106 MB),and inference time(2 ms/step),suggesting that it is easy to integrate into the smart grid.展开更多
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w...As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods.展开更多
In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar ener...In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar energy exploitation through building façades was addressed through motorized solar photovoltaic louvers(MPVL).On the other hand,proponents exalted the benefits of MPVL overlooking the typical analyses.In this communication,we attempted to perform a thorough industrial system evaluation of the MPVL.This communication presents a methodology to validate the industrial claims about MPVL devices and their economic efficiency and the insight on how geographical location influences their utilization and augment their potential benefits.This task is carried out by evaluating the extent of solar energy that can be harvested using solar photovoltaic system(PVSYST)software and investigating whether existing product claims are associated with MPVL are feasible in different locations.The performance and operational losses(temperature,internal network,power electronics)were evaluated.To design and assess the performance of different configurations based on the geographical analogy,simulation tools were successfully carried out based on different topographical locations.Based on these findings,various factors affect the employment of MPVL such as geographical and weather conditions,solar irradiation,and installation efficiency.tt is assumed that we successfully shed light and provided insights into the complexity associated with MPVL.展开更多
Photovoltaic power generating is one of the primary methods of utilizing solar energy resources,with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy....Photovoltaic power generating is one of the primary methods of utilizing solar energy resources,with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy.In order to provide reference strategies for pertinent researchers as well as potential implementation,this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches,statistical approaches and optimization techniques for solar power generation and forecasting.Deep learning-related methods,in particular,can theoretically handle arbitrary nonlinear transformations through proper model structural design,such as hidden layer topology optimization and objective function analysis to save information that can increase forecasting accuracy while filtering out irrelevant or less affected data for forecasting.The research’s results indicate that RBFNN-AG performed the best when applying the predetermined number of days,with an NRMSE value of 4.65%.RBFNN-AG performs better than sophisticated models like DenseNet(5.69%),SLFN-ELM(5.95%),and ANN-k-means-linear regression correction(6.11%).Additionally,scenario application and PV system investment techniques are provided to evaluate the current condition of new energy development and market trends both domestically and internationally.展开更多
基金the financial support provided by Universiti Malaysia Pahang Al Sultan Abdullah(www.umpsa.edu.my,accessed 10 April 2024)through the Doctoral Research Scheme(DRS)toMr.Rittick Maity and the Postgraduate Research Scheme(PGRS220390).
文摘The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
基金The research is supported by the National Natural Science Foundation of China(62072469)the National Key R&D Program of China(2018AAA0101502)+2 种基金Shandong Natural Science Foundation(ZR2019MF049)West Coast artificial intelligence technology innovation center(2019-1-5,2019-1-6)the Opening Project of Shanghai Trusted Industrial Control Platform(TICPSH202003015-ZC).
文摘Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources.However,there are challenges in building models through centralized shared data due to data privacy concerns and industry competition.Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally.In this paper,we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model.We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach.Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy,and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.
文摘A photovoltaic (PV) string with multiple modules with bypass diodes frequently deployed on a variety of autonomous PV systems may present multiple power peaks under uneven shading. For optimal solar harvesting, there is a need for a control schema to force the PV string to operate at global maximum power point (GMPP). While a lot of tracking methods have been proposed in the literature, they are usually complex and do not fully take advantage of the available characteristics of the PV array. This work highlights how the voltage at operating point and the forward voltage of the bypass diode are considered to design a global maximum power point tracking (GMPPT) algorithm with a very limited global search phase called Fast GMPPT. This algorithm successfully tracks GMPP between 94% and 98% of the time under a theoretical evaluation. It is then compared against Perturb and Observe, Deterministic Particle Swarm Optimization, and Grey Wolf Optimization under a sequence of irradiance steps as well as a power-over-voltage characteristics profile that mimics the electrical characteristics of a PV string under varying partial shading conditions. Overall, the simulation with the sequence of irradiance steps shows that while Fast GMPPT does not have the best convergence time, it has an excellent convergence rate as well as causes the least amount of power loss during the global search phase. Experimental test under varying partial shading conditions shows that while the GMPPT proposal is simple and lightweight, it is very performant under a wide range of dynamically varying partial shading conditions and boasts the best energy efficiency (94.74%) out of the 4 tested algorithms.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
基金Innovation and Development Project of China Meteorological Administration(CXFZ2023J044)Innovation Foundation of CMA Public Meteorological Service Center(K2023002)+1 种基金“Tianchi Talents”Introduction Plan(2023)Key Innovation Team for Energy and Meteorology of China Meteorological Administration。
文摘In the present study,multimodel ensemble forecast experiments of the global horizontal irradiance(GHI)were conducted using the dynamic variable weight technique.The study was based on the forecasts of four numerical models,namely,the China Meteorological Administration Wind Energy and Solar Energy Prediction System,the Mesoscale Weather Numerical Prediction System of China Meteorological Administration,the China Meteorological Administration Regional Mesoscale Numerical Prediction System-Guangdong,and the Weather Research and Forecasting Model-Solar,and observational data from four photovoltaic(PV)power stations in Yangjiang City,Guangdong Province.The results show that compared with those of the monthly optimal numerical model forecasts,the dynamic variable weight-based ensemble forecasts exhibited 0.97%-15.96%smaller values of the mean absolute error and 3.31%-18.40%lower values of the root mean square error(RMSE).However,the increase in the correlation coefficient was not obvious.Specifically,the multimodel ensemble mainly improved the performance of GHI forecasts below 700 W m^(-2),particularly below 400 W m^(-2),with RMSE reductions as high as 7.56%-28.28%.In contrast,the RMSE increased at GHI levels above 700 W m^(-2).As for the key period of PV power station output(02:00-07:00),the accuracy of GHI forecasts could be improved by the multimodel ensemble:the multimodel ensemble could effectively decrease the daily maximum absolute error(AE max)of GHI forecasts.Moreover,with increasing forecasting difficulty under cloudy conditions,the multimodel ensemble,which yields data closer to the actual observations,could simulate GHI fluctuations more accurately.
文摘A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance.
文摘面对居民日益增长的生活热水和电能需求,光伏/光热(photovoltaic/thermal,PV/T)技术的应用可以降低建筑运行时的能源消耗。本文介绍了一种太阳能PV/T光储直驱热电联产(combined heat and power,CHP)系统,为了减少系统运行过程中的能量损失,采用直流压缩机和储能电池,并在兰州地区对系统的运行性能开展了实验测试。研究结果表明,PV/T系统的光伏板温度相比传统PV组件温度平均降低12.26℃,平均发电效率相对提升8.1%。在将24.4~27.2℃的水加热到50.1~50.7℃的过程中,平均性能系数(coefficient of performance,COP)可达到5.48,相比传统空气源热泵热水器提高82.1%~106.8%。平均集热效率和综合效率分别为37.30%和71.24%,PV/T系统的发电量和耗电量分别为3.33kWh和1.69kWh,发电量相比PV系统提高5.7%。太阳能PV/T光储直驱热电联产系统可以减少建筑部门的能源消耗,并提升PV/T系统的发电效率和综合效率,在晴天条件下可以实现离网运行。
基金This research is funded by Prince Sattam BinAbdulaziz University,Grant Number IF-PSAU-2021/01/18921.
文摘Renewable energy sources are gaining popularity,particularly photovoltaic energy as a clean energy source.This is evident in the advancement of scientific research aimed at improving solar cell performance.Due to the non-linear nature of the photovoltaic cell,modeling solar cells and extracting their parameters is one of the most important challenges in this discipline.As a result,the use of optimization algorithms to solve this problem is expanding and evolving at a rapid rate.In this paper,a weIghted meaN oF vectOrs algorithm(INFO)that calculates the weighted mean for a set of vectors in the search space has been applied to estimate the parameters of solar cells in an efficient and precise way.In each generation,the INFO utilizes three operations to update the vectors’locations:updating rules,vector merging,and local search.The INFO is applied to estimate the parameters of static models such as single and double diodes,as well as dynamic models such as integral and fractional models.The outcomes of all applications are examined and compared to several recent algorithms.As well as the results are evaluated through statistical analysis.The results analyzed supported the proposed algorithm’s efficiency,accuracy,and durability when compared to recent optimization algorithms.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (No.2019M3F2A1073179).
文摘Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits.Existing PV forecasting techniques(sequential and convolutional neural networks(CNN))are sensitive to environmental conditions,reducing energy distribution system performance.To handle these issues,this article proposes an efficient,weather-resilient convolutional-transformer-based network(CT-NET)for accurate and efficient PV power forecasting.The network consists of three main modules.First,the acquired PV generation data are forwarded to the pre-processing module for data refinement.Next,to carry out data encoding,a CNNbased multi-head attention(MHA)module is developed in which a single MHA is used to decode the encoded data.The encoder module is mainly composed of 1D convolutional and MHA layers,which extract local as well as contextual features,while the decoder part includes MHA and feedforward layers to generate the final prediction.Finally,the performance of the proposed network is evaluated using standard error metrics,including the mean squared error(MSE),root mean squared error(RMSE),and mean absolute percentage error(MAPE).An ablation study and comparative analysis with several competitive state-of-the-art approaches revealed a lower error rate in terms of MSE(0.0471),RMSE(0.2167),and MAPE(0.6135)over publicly available benchmark data.In addition,it is demonstrated that our proposed model is less complex,with the lowest number of parameters(0.0135 M),size(0.106 MB),and inference time(2 ms/step),suggesting that it is easy to integrate into the smart grid.
基金This project is supported by the National Natural Science Foundation of China(NSFC)(Nos.61806087,61902158).
文摘As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods.
文摘In the realm of technological market penetration of solar photovoltaic louvers(PVL)addressing environmental difficulties and the industrial revolution,a new avenue of renewable energy is introduced.Moreover,solar energy exploitation through building façades was addressed through motorized solar photovoltaic louvers(MPVL).On the other hand,proponents exalted the benefits of MPVL overlooking the typical analyses.In this communication,we attempted to perform a thorough industrial system evaluation of the MPVL.This communication presents a methodology to validate the industrial claims about MPVL devices and their economic efficiency and the insight on how geographical location influences their utilization and augment their potential benefits.This task is carried out by evaluating the extent of solar energy that can be harvested using solar photovoltaic system(PVSYST)software and investigating whether existing product claims are associated with MPVL are feasible in different locations.The performance and operational losses(temperature,internal network,power electronics)were evaluated.To design and assess the performance of different configurations based on the geographical analogy,simulation tools were successfully carried out based on different topographical locations.Based on these findings,various factors affect the employment of MPVL such as geographical and weather conditions,solar irradiation,and installation efficiency.tt is assumed that we successfully shed light and provided insights into the complexity associated with MPVL.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61902158,61806087).
文摘Photovoltaic power generating is one of the primary methods of utilizing solar energy resources,with large-scale photovoltaic grid-connected power generation being the most efficient way to fully utilize solar energy.In order to provide reference strategies for pertinent researchers as well as potential implementation,this paper tries to provide a survey investigation and technical analysis of machine learning-related approaches,statistical approaches and optimization techniques for solar power generation and forecasting.Deep learning-related methods,in particular,can theoretically handle arbitrary nonlinear transformations through proper model structural design,such as hidden layer topology optimization and objective function analysis to save information that can increase forecasting accuracy while filtering out irrelevant or less affected data for forecasting.The research’s results indicate that RBFNN-AG performed the best when applying the predetermined number of days,with an NRMSE value of 4.65%.RBFNN-AG performs better than sophisticated models like DenseNet(5.69%),SLFN-ELM(5.95%),and ANN-k-means-linear regression correction(6.11%).Additionally,scenario application and PV system investment techniques are provided to evaluate the current condition of new energy development and market trends both domestically and internationally.