The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Th...The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.展开更多
The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ...The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DF...A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.展开更多
A building integrated photovoltaic system(BIPV)system may produce the same amount of electricity as consumed in the building on a yearly base.The simultaneity of production and consumption however needs to be evaluate...A building integrated photovoltaic system(BIPV)system may produce the same amount of electricity as consumed in the building on a yearly base.The simultaneity of production and consumption however needs to be evaluated:the distribution grid is regarded as virtual storage and is loaded unconventionally or even overloaded.A detailed bottom-up modelling approach of the domestic load,thermal installations and the local generation of BIPV system may give more insight.The present paper aims at quantifying the impact of domestic load profiles on the grid-interaction of BIPV-equipped dwelling in a moderate Belgian climate wherefore the cover factor is defined.For a yearly electricity production that equals the yearly domestic demand,a cover factor of 0.42 is found if a classic heating system is installed,denoting that more than half of the produced electricity will be passed on to the grid and withdrawn on another moment.If a heat pump is used for space heating and domestic hot water,the cover factor decreases to 0.29.展开更多
This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required rea...This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.展开更多
The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detail...The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detailed photovoltaic(PV)module and the application of new control techniques for efficient energy extraction.The PV module employs a single-stage conversion method to integrate it with the utility grid.For extraction the maximum power from PV and integrate it to power grid,a three-phase voltage source converter is used.For obtaining the maximum power at a particular irradiance a maximum power point tracking(MPPT)scheme is used.The fuzzy logic control and adaptive network-based fuzzy inference system are proposed for direct current(DC)link voltage control.The proposed model and control scheme are validated through a comparison with the standard power-voltage and current-voltage charts for a PV module.Simulation results demonstrate that the system stability can be maintained with the power grid and in the island mode,in contrast with the MPPT.展开更多
This paper presents the behaviours of three-phase induction motor driving centrifugal pump under various solar irradiation levels, where the motor speed and torque depend on the source voltage and frequency, while the...This paper presents the behaviours of three-phase induction motor driving centrifugal pump under various solar irradiation levels, where the motor speed and torque depend on the source voltage and frequency, while the water-flow rate depends on the motor speed, density, and static head according to affinity flow. Matlab/Simulink model is proposed for studying the behaviours of these machines with respect to water flow capacity, motor current, electro-magnetic torque, and motor efficiency. The proposed photovoltaic with maximum power point tracking model based on observation and perturbation (O&P) maximum power tracking model is applied. The output voltage is regulated throughout Buck-Boost converter with purpose maintaining the output voltage at predetermined values. Since Induction motors are widely used in pump systems, the electromagnetic torque, water-flow rate are studied for various source frequencies. Comparison analysis is conducted for both motors with respect to water flow-rate, heads elevation, and motor current. In addition to that, the proposed system presents Photovoltaic-Grid (PV-Grid) Integrated model, where the power shortage required for normally operation of the pump is drawn from the electrical grid.展开更多
Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to com...Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.展开更多
Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration...Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.展开更多
This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission line...This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission lines from the grid to these localities is not viable, a good solution is <span>an</span><span> installation in these areas of standalone photovoltaic systems. The design process comprises the choice and dimensioning of the solar panels, the battery storage, DC-AC inverter, and mini transmission grid to the different homes. The design is for a 15 kW PV system including an economic evaluation and analysis using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Data on the average monthly solar radiation and temperature w</span><span>ere</span><span> obtained from various sources, including, Photovoltaic Geographical Information System (PVGIS) for Africa. From this data the study area receives a monthly average solar insolation of 6.16 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day with the worst month </span><span>being </span><span>August with 5.22 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day. The total daily electrical energy consumption is estimated to be about 72.525 kWh. Simulation results using HOMER software shows that the overall capital cost of the PV system components is $122,337, a replacement cost of $12,889 and an operation and maintenance cost of $29,946 over 10years. A financial analysis of the system showed that the design was both viable and sustainable with low maintenance cost</span><span>.</span>展开更多
Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great dem...Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.展开更多
This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar elect...This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar electricity delivered to grid is verified with the results from a computer simulation package (PVSYST) by adopting the installed component specifications, operation conditions, and weather data of the site. The results show high consistency between the values of energy delivered to the grid measured by the energy company and the energy estimated by system simulation. New system performance indicator is developed and called the optimum performance compliance ratio (PCR). It is a measure of the compliance of the output of the designed PV system with the output which would be produced by the same system with a solar tracker. This indicator provides system designers, contractors and energy providers with the actual capacity of the system that they can offer the end-users.展开更多
The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) effic...The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) efficiency and its applicable evaluation in practice.Intense work has been done in the last few years to formulate applicable standards for measuring static and dynamic efficiencies worldwide.Besides that,this work is presenting on novel methods of analysis on non-trivial system characteristics impacting the final evaluation on the overall performance of the PV inverter.The elaborated testing procedures for complex system behavior under highly nonlinear conditions (unintentional partial shading, mismatching of DC strings) are explained and characterized.With the help of experimental results, the exclusive impact on the overall efficiency is illustrated and helpful statements are given on the resulting technical characteristics of MPP strategies.展开更多
The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices...The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.展开更多
This paper mainly studies scheduling type photovoltaic generation system, and establishes a three-phase photovoltaic grid-connected model in Matlab/Simulink, which uses the MPPT control that can make full use of the s...This paper mainly studies scheduling type photovoltaic generation system, and establishes a three-phase photovoltaic grid-connected model in Matlab/Simulink, which uses the MPPT control that can make full use of the solar energy. At the same time, energy storage device is added. The inverter of the energy storage device adopts V/f control. In the running state of the islanding because of a certain power failure, it can maintain a constant voltage and frequency. The simulation shows that as the output of the photovoltaic power increases, harmonic rate decreases under the same conditions, and the energy storage device can increase the stability of photovoltaic grid and reduce harmonic contents. So it’s very necessary to add energy storage device in the photovoltaic system.展开更多
文摘The generation of photovoltaic(PV)solar energy is increasing continuously because it is renewable,unlimited,and clean energy.In the past,generation systems depended on non-renewable sources such as oil,coal,and gas.Therefore,this paper assesses the performance of a 51 kW PV solar power plant connected to a low-voltage grid to feed an administrative building in the 6th of October City,Egypt.The performance analysis of the considered grid-connected PV system is carried out using power system simulator for Engineering(PSS/E)software.Where the PSS/E program,monitors and uses the power analyzer that displays the parameters and measures some parameters such as current,voltage,total power,power factor,frequency,and current and voltage harmonics,the used inverter from the type of grid inverter for the considered system.The results conclude that when the maximum solar radiation is reached,the maximum current can be obtained from the solar panels,thus obtaining the maximum power and power factor.Decreasing total voltage harmonic distortion,a current harmonic distortion within permissible limits using active harmonic distortion because this type is fast in processing up to 300 microseconds.The connection between solar stations and the national grid makes the system more efficient.
基金the financial support provided by Universiti Malaysia Pahang Al Sultan Abdullah(www.umpsa.edu.my,accessed 10 April 2024)through the Doctoral Research Scheme(DRS)toMr.Rittick Maity and the Postgraduate Research Scheme(PGRS220390).
文摘The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘A system based on a PV-Wind will ensure better efficiency and flexibility using lower energy production.Today,plenty of work is being focussed on Doubly Fed Induction Generators(DFIG)utilized in wind energy systems.DFIG is found to be the best option in the Wind Energy Conversion Systems(WECS)to mitigate the issues caused by power converters.In this work,a new Artificial Neural Network(ANN)is proposed with the Diffusion and Dispersal strategy that works on Maximum Power Point Tracking(MPPT)along with Wind Energy Conversion System(WECS)to minimize electrical faults.The controller focus was not just to increase performance but also to reduce damage owing to any phase to phase fault or Phase to phase to ground fault.To ensure optimal MPPT for the proposed WECS,ANN achieves the optimal PI controller parameters for the indirect control of active and reactive power of DFIG.The optimal allocation and size of the DGs within the distributed system and for MPPT control are obtained using a population of agents.The generated solutions are evaluated and on being successful,the agents test their hypothesis again to create a positive feedback mechanism.Simulations are carried out,and the proposed IoT framework efficiency indicates performance improvement and faster recovery against faults by 9 percent for phase to ground fault and by 7.35 percent for phase to phase fault.
文摘A building integrated photovoltaic system(BIPV)system may produce the same amount of electricity as consumed in the building on a yearly base.The simultaneity of production and consumption however needs to be evaluated:the distribution grid is regarded as virtual storage and is loaded unconventionally or even overloaded.A detailed bottom-up modelling approach of the domestic load,thermal installations and the local generation of BIPV system may give more insight.The present paper aims at quantifying the impact of domestic load profiles on the grid-interaction of BIPV-equipped dwelling in a moderate Belgian climate wherefore the cover factor is defined.For a yearly electricity production that equals the yearly domestic demand,a cover factor of 0.42 is found if a classic heating system is installed,denoting that more than half of the produced electricity will be passed on to the grid and withdrawn on another moment.If a heat pump is used for space heating and domestic hot water,the cover factor decreases to 0.29.
文摘This paper presents the development and performance capability of a comprehensive Low voltage ride through (LVRT) control scheme that makes use of both the DC chopper and the current limiting based on the required reactive power during fault time. The study is conducted on an 8.5 MW single stage PV power plant (PVPP) connected to the Rwandan grid. In the event of fault disturbance, this control scheme helps to overcome the problems of excessive DC-link voltage by fast activation of the DC chopper operation. At the same instance, AC current is limited to the maximum rating of the inverter as a function of the injected reactive current. This helps overcome AC-over- current that may possibly lead to damage or disconnection of the inverter. The control scheme also ensures voltage support and power balance through the injection of reactive current as per grid code requirements. Selected simulations using MATLAB are carried out in the events of different kinds of fault caused voltage dips. Results demonstrate the effectiveness of the proposed LVRT control scheme.
基金supported by a project under the scheme entitled“Developing Policies&Adaptation Strategies to Climate Change in the Baltic Sea Region”(ASTRA),Project No.ASTRA6-4(2014-2020.4.01.16-0032).
文摘The resiliency of a standalone microgrid is of considerable issue because the available regulation measures and capabilities are limited.Given this background,this paper presented a new mathematical model for a detailed photovoltaic(PV)module and the application of new control techniques for efficient energy extraction.The PV module employs a single-stage conversion method to integrate it with the utility grid.For extraction the maximum power from PV and integrate it to power grid,a three-phase voltage source converter is used.For obtaining the maximum power at a particular irradiance a maximum power point tracking(MPPT)scheme is used.The fuzzy logic control and adaptive network-based fuzzy inference system are proposed for direct current(DC)link voltage control.The proposed model and control scheme are validated through a comparison with the standard power-voltage and current-voltage charts for a PV module.Simulation results demonstrate that the system stability can be maintained with the power grid and in the island mode,in contrast with the MPPT.
文摘This paper presents the behaviours of three-phase induction motor driving centrifugal pump under various solar irradiation levels, where the motor speed and torque depend on the source voltage and frequency, while the water-flow rate depends on the motor speed, density, and static head according to affinity flow. Matlab/Simulink model is proposed for studying the behaviours of these machines with respect to water flow capacity, motor current, electro-magnetic torque, and motor efficiency. The proposed photovoltaic with maximum power point tracking model based on observation and perturbation (O&P) maximum power tracking model is applied. The output voltage is regulated throughout Buck-Boost converter with purpose maintaining the output voltage at predetermined values. Since Induction motors are widely used in pump systems, the electromagnetic torque, water-flow rate are studied for various source frequencies. Comparison analysis is conducted for both motors with respect to water flow-rate, heads elevation, and motor current. In addition to that, the proposed system presents Photovoltaic-Grid (PV-Grid) Integrated model, where the power shortage required for normally operation of the pump is drawn from the electrical grid.
基金Chinese Academy of Science (No.KGCX2- YW- 366)Ministry of Science and Technology(No. 2011AA05A106)
文摘Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.
基金Supported by the National Program of International S&T Cooperation(No.2014DFE60020)Natural Science Foundation of Zhejiang Province(No.LY15E070004)
文摘Energy storage is an effective measure to deal with internal power fluctuation of micro-grid and ensure stable operation, especially in the micro-grid with high photovoltaic(PV) penetration. Its capacity configuration is related to the steady, safety and economy of micro-grid.In order to improve the absorptive capacity of micro-grid on maximizing the use of distributed PV power in micro-grid, and improve the power quality, an optimal energy storage configuration strategy is proposed, which takes many factors into account, such as the topology of micro-grid, the change of irradiance, the load fluctuation and the cable. The strategy can optimize the energy storage allocation model to minimize the storage power capacity and optimize the node configuration.The key electrical nodes are identified by using the sensitivity coefficient of the voltage, and then the model is optimized to simplify calculation. Finally, an example of the European low-voltage micro-grid and a micro-grid system in the laboratory is used to verify the effectiveness of the proposed method.The results show that the proposed method can optimize the allocation of capacity and the node of the energy storage system.
文摘This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission lines from the grid to these localities is not viable, a good solution is <span>an</span><span> installation in these areas of standalone photovoltaic systems. The design process comprises the choice and dimensioning of the solar panels, the battery storage, DC-AC inverter, and mini transmission grid to the different homes. The design is for a 15 kW PV system including an economic evaluation and analysis using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Data on the average monthly solar radiation and temperature w</span><span>ere</span><span> obtained from various sources, including, Photovoltaic Geographical Information System (PVGIS) for Africa. From this data the study area receives a monthly average solar insolation of 6.16 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day with the worst month </span><span>being </span><span>August with 5.22 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day. The total daily electrical energy consumption is estimated to be about 72.525 kWh. Simulation results using HOMER software shows that the overall capital cost of the PV system components is $122,337, a replacement cost of $12,889 and an operation and maintenance cost of $29,946 over 10years. A financial analysis of the system showed that the design was both viable and sustainable with low maintenance cost</span><span>.</span>
文摘Nowadays, distributing network-connected photovoltaic (PV) systems are expanded by merging a PV system and a Direct Current (DC)/Alternating Current (AC) energy converter. DC/AC conversion of PV energy is in great demand for AC applications. The supply of electrical machines and transfer energy to the distribution network is a typical case. In this work, we study and design a DC/AC energy converter using harmonic selective eliminated (HSE) method. To this end, we have combined two power stages connected in derivation. Each power stage is constituted of transistors and transformers. The connection by switching of the two rectangular waves, delivered by each of the stages, makes it possible to create a quasi-sinusoidal output voltage of the inverter. Mathematical equations based on the current-voltage characteristics of the inverter have been developed. The simulation model was validated using experimental data from a 25.2 kWp grid-coupled (PV) system, connected to Gridfit type inverters. The data were exported and implemented in programming software. A good agreement was observed and this shows all the robustness and the technical performances of the energy converter device. It emerges from this analysis that the inverter output voltage and the phase angle thus simulated are very important to control in order to orientate the transfer of the power flow from the continuous cell to cell to the alternating part. Simulated and field-testing results also show that increases in the value of the modulation factor (m) for low power output are highly significant. This study is an important tool for DC/AC inverter designers during initial planning stages. A short presentation of the design model of the inverter has been proposed in this article.
文摘This paper assesses 4 years of operation of a 1.75 kW roof top solar PV system installed in a Sydney suburban house. The system consists of 10 PV panels, a DC/AC inverter, and a grid connected gross meter. Solar electricity delivered to grid is verified with the results from a computer simulation package (PVSYST) by adopting the installed component specifications, operation conditions, and weather data of the site. The results show high consistency between the values of energy delivered to the grid measured by the energy company and the energy estimated by system simulation. New system performance indicator is developed and called the optimum performance compliance ratio (PCR). It is a measure of the compliance of the output of the designed PV system with the output which would be produced by the same system with a solar tracker. This indicator provides system designers, contractors and energy providers with the actual capacity of the system that they can offer the end-users.
文摘The overall performance of photovoltaic (PV) inverter imphes many different technical issues.One of the key criterias is based on the measurement of the conversion and the maximum power point tracking (MPPT) efficiency and its applicable evaluation in practice.Intense work has been done in the last few years to formulate applicable standards for measuring static and dynamic efficiencies worldwide.Besides that,this work is presenting on novel methods of analysis on non-trivial system characteristics impacting the final evaluation on the overall performance of the PV inverter.The elaborated testing procedures for complex system behavior under highly nonlinear conditions (unintentional partial shading, mismatching of DC strings) are explained and characterized.With the help of experimental results, the exclusive impact on the overall efficiency is illustrated and helpful statements are given on the resulting technical characteristics of MPP strategies.
基金supported by the Science and Technology Project of SGCC(kj2022-075).
文摘The integration of distributed generation brings in new challenges for the operation of distribution networks,including out-of-limit voltage and power flow control.Soft open points(SOP)are new power electronic devices that can flexibly control active and reactive power flows.With the exception of active power output,photovoltaic(PV)devices can provide reactive power compensation through an inverter.Thus,a synergetic optimization operation method for SOP and PV in a distribution network is proposed.A synergetic optimization model was developed.The voltage deviation,network loss,and ratio of photovoltaic abandonment were selected as the objective functions.The PV model was improved by considering the three reactive power output modes of the PV inverter.Both the load fluctuation and loss of the SOP were considered.Three multi-objective optimization algorithms were used,and a compromise optimal solution was calculated.Case studies were conducted using an IEEE 33-node system.The simulation results indicated that the SOP and PVs complemented each other in terms of active power transmission and reactive power compensation.Synergetic optimization improves power control capability and flexibility,providing better power quality and PV consumption rate.
文摘This paper mainly studies scheduling type photovoltaic generation system, and establishes a three-phase photovoltaic grid-connected model in Matlab/Simulink, which uses the MPPT control that can make full use of the solar energy. At the same time, energy storage device is added. The inverter of the energy storage device adopts V/f control. In the running state of the islanding because of a certain power failure, it can maintain a constant voltage and frequency. The simulation shows that as the output of the photovoltaic power increases, harmonic rate decreases under the same conditions, and the energy storage device can increase the stability of photovoltaic grid and reduce harmonic contents. So it’s very necessary to add energy storage device in the photovoltaic system.