期刊文献+
共找到497篇文章
< 1 2 25 >
每页显示 20 50 100
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
1
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(pv)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(ESN)
下载PDF
Research on the MPPT of Photovoltaic Power Generation Based on Improved WOA and P&O under Partial Shading Conditions
2
作者 Jian Zhong Lei Zhang Ling Qin 《Energy Engineering》 EI 2024年第4期951-971,共21页
Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditiona... Partial shading conditions(PSCs)caused by uneven illumination become one of the most common problems in photovoltaic(PV)systems,which can make the PV power-voltage(P-V)characteristics curve show multi-peaks.Traditional maximum power point tracking(MPPT)methods have shortcomings in tracking to the global maximum power point(GMPP),resulting in a dramatic decrease in output power.In order to solve the above problems,intelligent algorithms are used in MPPT.However,the existing intelligent algorithms have some disadvantages,such as slow convergence speed and large search oscillation.Therefore,an improved whale algorithm(IWOA)combined with the P&O(IWOA-P&O)is proposed for the MPPT of PV power generation in this paper.Firstly,IWOA is used to track the range interval of the GMPP,and then P&O is used to accurately find the MPP in that interval.Compared with other algorithms,simulation results show that this method has an average tracking efficiency of 99.79%and an average tracking time of 0.16 s when tracking GMPP.Finally,experimental verification is conducted,and the results show that the proposed algorithm has better MPPT performance compared to popular particle swarm optimization(PSO)and PSO-P&O algorithms. 展开更多
关键词 photovoltaic power generation maximum power point tracking whale algorithm perturbation and observation
下载PDF
Discussion on the Soil and Water Conservation Model in Mountain Photovoltaic Power Generation Project
3
作者 Aijun LIN Junwen TANG 《Asian Agricultural Research》 2024年第10期28-31,37,共5页
In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has receiv... In the context of rising global energy demand and increasing awareness of environmental protection,photovoltaic power generation,as a clean and renewable form of energy,has become increasingly important and has received widespread attention and application worldwide.However,during the construction and operation of mountain photovoltaic power generation projects,water and soil erosion has become a major challenge,which not only restricts the sustainable development process of the project,but also has a significant negative impact on the local ecological environment.This article deeply analyzes the multiple causes,extensive impacts and effective prevention and control strategies of water and soil erosion in mountain photovoltaic power generation projects.The results show that rainfall intensity,terrain slope,soil type and vegetation coverage are the four key factors leading to soil erosion.Soil erosion not only causes a sharp decline in soil fertility,but also aggravates the problem of sediment deposition in rivers and reservoirs,and poses a direct threat to the stability and operating efficiency of photovoltaic equipment.In order to deal with the above problems,this paper innovatively puts forward a series of soil and water conservation technologies,covering multiple dimensions such as engineering measures,plant measures,farming measures and temporary measures,and deeply discusses the application models and management strategies of these measures in key stages such as planning and design,construction,operation and maintenance.Through specific case analysis,the successful practical experience of soil and water conservation is refined and summarized,and the key role of community cooperation,technical support and modern monitoring technology in preventing and controlling soil and water erosion is further emphasized.This article aims to achieve a win-win situation of ecological environment protection and energy development and utilization through scientific planning and effective governance,and contribute to the construction of a green,low-carbon,and sustainable energy system. 展开更多
关键词 Mountain photovoltaic power generation Soil erosion Prevention and control measures Sustainable development
下载PDF
Research on the Application of New Energy Photovoltaic Power Generation Technology
4
作者 Weimin Liu Yue Qi 《Journal of Electronic Research and Application》 2024年第5期168-173,共6页
With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situatio... With the rapid development of technology and economy,the demand for energy in society is increasing.People are gradually realizing that fossil energy is limited,and the development of new energy may also face situations where it cannot meet social needs.The problem of resource shortage is gradually exposed to people.Therefore,the development of usable new energy has become an urgent problem for society to solve.At present,electricity is the most widely used energy source worldwide and photovoltaic power generation technology is gradually becoming well-known.As an emerging industry,the development of photovoltaic power generation still requires continuous promotion by national and social policies to be extended to various industries and ensure the stability of its energy supply.This article mainly outlines the principles,characteristics,and advantages of photovoltaic power generation,and briefly explains the current technology types and application aspects of photovoltaic power generation to contribute to its promotion and better serve all aspects of social life with new energy. 展开更多
关键词 New energy photovoltaic power generation APPLICATION
下载PDF
Comprehensive Benefit Evaluation of SZ Distributed Photovoltaic Power Generation Project Based on AHP-Matter-Element Extension Model
5
作者 Shuli Jing 《Journal of Electronic Research and Application》 2024年第1期60-68,共9页
With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehen... With the introduction of the“dual carbon goals,”there has been a robust development of distributed photovoltaic power generation projects in the promotion of their construction.As part of this initiative,a comprehensive and systematic analysis has been conducted to study the overall benefits of photovoltaic power generation projects.The evaluation process encompasses economic,technical,environmental,and social aspects,providing corresponding analysis methods and data references.Furthermore,targeted countermeasures and suggestions are proposed,signifying the research’s importance for the construction and development of subsequent distributed photovoltaic power generation projects. 展开更多
关键词 Distributed photovoltaic power generation Comprehensive benefits EVALUATION
下载PDF
Equivalent Method of Integrated Power Generation System of Wind, Photovoltaic and Energy Storage in Power Flow Calculation and Transient Simulation 被引量:10
6
作者 王皓怀 汤涌 +3 位作者 侯俊贤 刘楠 李碧辉 张宏宇 《中国电机工程学报》 EI CSCD 北大核心 2012年第1期I0001-I0026,共26页
针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选... 针对工程实际开展风光储联合发电系统在潮流计算和机电暂态仿真中的等值方法研究,旨在为大容量风光储联合发电系统的并网仿真分析奠定基础。将潮流计算的等值分为单元机组和集电系统2部分来研究。单元机组等值采用根据不同控制模式选取不同节点类型的方法,针对集电系统等值提出基于损耗不变原则的方法。等值模型和详细模型的算例结果表明,潮流计算等值方法具有较好的精度。在机电暂态仿真动态等值中,基于实际工程计算的最严重工况分析原则,提出运行在满出力点的单机“倍乘”等值模型,为工程计算中的风光储联合发电系统动态等值提供了一种解决方案。 展开更多
关键词 综合发电系统 暂态仿真 光伏发电 潮流计算 等效方法 电力系统 风能 功率
下载PDF
Investigating Load Regulation Characteristics of a Wind-PV-Coal Storage Multi-Power Generation System
7
作者 Zhongping Liu Enhui Sun +3 位作者 Jiahao Shi Lei Zhang Qi Wang Jiali Dong 《Energy Engineering》 EI 2024年第4期913-932,共20页
There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regu... There is a growing need to explore the potential of coal-fired power plants(CFPPs)to enhance the utilization rate of wind power(wind)and photovoltaic power(PV)in the green energy field.This study developed a load regulation model for a multi-power generation system comprising wind,PV,and coal energy storage using realworld data.The power supply process was divided into eight fundamental load regulation scenarios,elucidating the influence of each scenario on load regulation.Within the framework of the multi-power generation system with the wind(50 MW)and PV(50 MW)alongside a CFPP(330 MW),a lithium-iron phosphate energy storage system(LIPBESS)was integrated to improve the system’s load regulation flexibility.The energy storage operation strategy was formulated based on the charging and discharging priority of the LIPBESS for each basic scenario and the charging and discharging load calculation method of LIPBESS auxiliary regulation.Through optimization using the particle swarm algorithm,the optimal capacity of LIPBESS was determined to be within the 5.24-4.88 MWh range.From an economic perspective,the LIPBESS operating with CFPP as the regulating power source was 49.1% lower in capacity compared to the renewable energy-based storage mode. 展开更多
关键词 Wind power coal-fired power pv multi-power generation system lithium-iron phosphate energy storage system
下载PDF
Economic Evaluation Method of Photovoltaic Power Generation Installed in Ordinary Homes 被引量:1
8
作者 Yasushi Iwasaki Kayoko Yamamoto 《Smart Grid and Renewable Energy》 2014年第6期137-151,共15页
This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following th... This study aims to develop an economic evaluation method for installing photovoltaic power generation in ordinary homes using GIS (Geographic Information Systems). The conclusions can be summarized in the following three points: 1) This method determines the profit and loss and payback period in order to evaluate the installation of photovoltaic power generation, taking into account the price of equipment, solar battery module conversion efficiency, subsidy, electricity purchase price, service life and rate for selling electricity. 2) The proposed evaluation method was applied to Kanagawa Prefecture in Japan, providing plural scenarios. Using a solar battery module conversion efficiency of more than 15%, it is possible to make the payback period shorter than the 20-year service life and anticipate a profit in almost the whole area. 3) The areas suitable for photovoltaic power generation are Kawasaki City and Ninomiya-machi. It is necessary to adopt measures to increase the subsidy and install photovoltaic power generating systems in specific places in areas where subsidies are not provided in enough amounts. 展开更多
关键词 photovoltaic power generation ECONOMIC Evaluation SUBSIDY PROFIT and Loss and Payback PERIOD GIS (Geographic Information Systems)
下载PDF
Preliminary Feasibility Study on Application of Very Large Scale-Photovoltaic Power Generation in China 被引量:1
9
作者 HuXuehao ZhouXiaoxin BaiXiaomin ZhangWentao 《Electricity》 2005年第1期48-52,共5页
Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based ... Some energy experts believe that solar energy photovoltaic power generation is hopeful to be applied in a large amount and possesses a certain proportion in the structure of energy in the future. In this paper, based on the forecasting of electric load demand and energy structure of power generation in the middle of 21 century, the pictures of VLS-PV power genera- tion is composed, the operation characteristic of VLS-PV power generation and the adaptability of electric power grid for it is analyzed, the ways for transmitting large amount of PV power and the economic and technical bottlenecks for applying VLS-PV power generation are discussed. Finally, the steps and suggestions for developing VLS-PV power generation and its electric power system in China are proposed. 展开更多
关键词 very large scale photovoltaic power generation preliminary feasibility study
下载PDF
Solar Shutters based on Photovoltaic Power Generation 被引量:1
10
作者 LUO Zhixuan 《International Journal of Plant Engineering and Management》 2020年第4期193-204,共12页
This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,wh... This paper introduces a set of electrical energy-saving system for commercial office buildings,aiming at making better use of solar energy and photovoltaic power generation.Solar energy is a renewable energy source,which is inexhaustible clean energy and has great commercial application value.Based on this fact,we plan to design a unique and novel solar shutter in combination with the daily observation and the shape of solar panels.The shutter blades are equipped with an automatic light tracking system,and the angle of the blades can be adjusted in time through photoresistor induction,that is,as much solar energy as possible can be converted into electric energy for load use,and at the same time,comfortable light can be provided for the house.In essence,the system is a small photovoltaic power generation system,which runs all day with high-efficiency based on automatic sun tracking.Among them,the basic operation route includes:solar position detection,computer data processing,photovoltaic and electric volt energy conversion,circuit connection,etc.From the current debugging results,the shutter has the characteristics of humanization,high efficiency,cleanliness and so on.Through this energy-saving system,we hope to maximize the use of solar energy in the premise of low cost,so as to achieve the purpose of energy saving. 展开更多
关键词 solar shutter photovoltaic power generation working principle and performance
下载PDF
Effect of Photovoltaic Power Generation on Carbon Dioxide Emission Reduction under Double Carbon Background
11
作者 Zhao Xinrui Hao Lei +2 位作者 Wu Yiling Xu Hong Dong Jinxiang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2023年第4期151-163,共13页
Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean ... Increasing the efficiency and proportion of photovoltaic power generation installations is one of the best ways to reduce both CO_(2) emissions and reliance on fossil-fuel-based power supplies.Solar energy is a clean and renewable power source with excellent potential for further development and utilization.In 2021,the global solar installed capacity was about 749.7 GW.Establishing correlations between solar power generation,standard coal equivalent,carbon sinks,and green sinks is crucial.However,there have been few reports about correlations between the efficiency of tracking solar photovoltaic panels and the above parameters.This paper calculates the increased power generation achievable through the use of tracking photovoltaic panels compared with traditional fixed panels and establishes relationships between power generation,standard coal equivalent,and carbon sinks,providing a basis for attempts to reduce reliance on carbon-based fuels.The calculations show that power generation efficiency can be improved by about 26.12%by enabling solar panels to track the sun's rays during the day and from season to season.Through the use of this improved technology,global CO_(2) emissions can be reduced by 183.63 Mt,and the standard coal equivalent can be reduced by 73.67 Mt yearly.Carbon capture is worth approximately EUR 15.48 billion,and carbon accounting analysis plays a vital role in carbon trading. 展开更多
关键词 photovoltaic power generation carbon accounting carbon sink emission reduction
下载PDF
The Hidden-Layers Topology Analysis of Deep Learning Models in Survey for Forecasting and Generation of the Wind Power and Photovoltaic Energy
12
作者 Dandan Xu Haijian Shao +1 位作者 Xing Deng Xia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第5期567-597,共31页
As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as w... As wind and photovoltaic energy become more prevalent,the optimization of power systems is becoming increasingly crucial.The current state of research in renewable generation and power forecasting technology,such as wind and photovoltaic power(PV),is described in this paper,with a focus on the ensemble sequential LSTMs approach with optimized hidden-layers topology for short-term multivariable wind power forecasting.The methods for forecasting wind power and PV production.The physical model,statistical learningmethod,andmachine learning approaches based on historical data are all evaluated for the forecasting of wind power and PV production.Moreover,the experiments demonstrated that cloud map identification has a significant impact on PV generation.With a focus on the impact of photovoltaic and wind power generation systems on power grid operation and its causes,this paper summarizes the classification of wind power and PV generation systems,as well as the benefits and drawbacks of PV systems and wind power forecasting methods based on various typologies and analysis methods. 展开更多
关键词 Deep learning wind power forecasting pv generation and forecasting hidden-layer information analysis topology optimization
下载PDF
PSO-BP-Based Optimal Allocation Model for Complementary Generation Capacity of the Photovoltaic Power Station
13
作者 Zhenfang Liu Haibo Liu Dongmei Zhang 《Energy Engineering》 EI 2023年第7期1717-1727,共11页
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o... To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system. 展开更多
关键词 photovoltaic power station complementary power generation capacity optimization resource allocation
下载PDF
Research on Multi-Scale Modeling of Grid-Connected Distributed Photovoltaic Power Generation
14
作者 Chen Lv Wanxing Sheng +1 位作者 Keyan Liu Xinzhou Dong 《Energy and Power Engineering》 2017年第4期127-140,共14页
The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key... The complexity of distribution network model mainly depends on the model scale of grid-connected distributed photovoltaic (PV) power generation. Therefore, the simulation performance of multi-scale PV model is the key factor of the simulation accuracy in the specific operating scenarios of distribution network. In this paper, a multi-scale model of grid connected PV distributed generation system is proposed based on the mathematical model of grid-connected distributed PV power generation. It is analyzed that differences of simulation performance, such as adaptability of simulation step size, accuracy of output and the effect on voltage profile of distribution network, between PV models with different scales in IEEE 33 node example. Simulation results indicate that the multi-scale model is effective in improving the accuracy and efficiency of simulation under different operating conditions of distribution network. 展开更多
关键词 pv DISTRIBUTED generation MULTI-SCALE Modeling Simulation STEP Size OUTPUT power VOLTAGE Profile
下载PDF
Performance on Power,Hot and Cold Water Generation of a Hybrid Photovoltaic Thermal Module
15
作者 Thakrittorn Pansiri Attakorn Asanakham +1 位作者 Thoranis Deethayat Tanongkiat Kiatsiriroat 《Energy Engineering》 EI 2022年第5期1861-1878,共18页
This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Ch... This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Chiang Mai tropical climate with a 200 Wp monocrystalline PVT module having dimensions of 1.601 m×0.828 m connected with two water tanks each of 60 L taken for hot and cool water storages.The module was facing south with 18o inclination.The electrical load was a 200 W halogen lamp.From experiments,by taking the module as a nocturnal radiative cooling surface,the cool water temperature in the cool storage tank could be reduced 2℃–3℃each night and the temperature could be reduced from 31.5℃to 22.1℃within 4 consecutive days.The cool water at approximately 23℃was also used to cool down the PVT module from noon when the PVT module temperature was rather high,and then the module temperature immediately dropped around 5℃and approximately 10%increase of electrical power could be achieved.A set of mathematical models was also developed to predict the PVT module temperature and the hot water temperature including the cool water temperature in the storage tanks during daytime and nighttime.The simulated results agreed well with the experimental data. 展开更多
关键词 photovoltaic thermal module power generation hot and cold water production nocturnal cooling
下载PDF
Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis
16
作者 Wenchao Ma 《Energy Engineering》 EI 2023年第7期1685-1699,共15页
The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete ra... The power output state of photovoltaic power generation is affected by the earth’s rotation and solar radiation intensity.On the one hand,its output sequence has daily periodicity;on the other hand,it has discrete randomness.With the development of new energy economy,the proportion of photovoltaic energy increased accordingly.In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation,this paper proposes the short-termprediction of photovoltaic power generation based on the improvedmulti-scale permutation entropy,localmean decomposition and singular spectrum analysis algorithm.Firstly,taking the power output per unit day as the research object,the multi-scale permutation entropy is used to calculate the eigenvectors under different weather conditions,and the cluster analysis is used to reconstruct the historical power generation under typical weather rainy and snowy,sunny,abrupt,cloudy.Then,local mean decomposition(LMD)is used to decompose the output sequence,so as to extract more detail components of the reconstructed output sequence.Finally,combined with the weather forecast of the Meteorological Bureau for the next day,the singular spectrumanalysis algorithm is used to predict the photovoltaic classification of the recombination decomposition sequence under typical weather.Through the verification and analysis of examples,the hierarchical prediction experiments of reconstructed and non-reconstructed output sequences are compared.The results show that the algorithm proposed in this paper is effective in realizing the short-term prediction of photovoltaic generator,and has the advantages of simple structure and high prediction accuracy. 展开更多
关键词 photovoltaic power generation short term forecast multiscale permutation entropy local mean decomposition singular spectrum analysis
下载PDF
POWER GENERATION POTENTIAL OF BIPV APPLICATION IN CHINA
17
作者 由世俊 华君 +2 位作者 涂光备 吕灿仁 杨洪兴 《Transactions of Tianjin University》 EI CAS 2001年第1期17-20,共4页
This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energ... This paper discusses the potential and prospect of building-integrated photovoltaics (BIPV) for solar electrical power generation in China.The BIPV technology has been identified as the most economical renewable energy resource to contribute to world electrical energy demand for protecting environment from reduced fossil fuel consumption.The available solar energy resource of 14 cities and the potential power generation from PV claddings in buildings in China were estimated.The economical analysis of BIPV application is discussed.It is found that the potential is significant and the government should play an important role in its development. 展开更多
关键词 building-integrated photovoltaics solar electrical power generation solar energy resource
下载PDF
Research Progress of Photovoltaic Power Prediction Technology Based on Artificial Intelligence Methods
18
作者 Daixuan Zhou Yujin Liu +2 位作者 Xu Wang Fuxing Wang Yan Jia 《Energy Engineering》 EI 2024年第12期3573-3616,共44页
With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject t... With the increasing proportion of renewable energy in China’s energy structure,among which photovoltaic power generation is also developing rapidly.As the photovoltaic(PV)power output is highly unstable and subject to a variety of factors,it brings great challenges to the stable operation and dispatch of the power grid.Therefore,accurate short-term PV power prediction is of great significance to ensure the safe grid connection of PV energy.Currently,the short-term prediction of PV power has received extensive attention and research,but the accuracy and precision of the prediction have to be further improved.Therefore,this paper reviews the PV power prediction methods from five aspects:influencing factors,evaluation indexes,prediction status,difficulties and future trends.Then summarizes the current difficulties in prediction based on an in-depth analysis of the current research status of physical methods based on the classification ofmodel features,statistical methods,artificial intelligence methods,and combinedmethods of prediction.Finally,the development trend ofPVpower generation prediction technology and possible future research directions are envisioned. 展开更多
关键词 photovoltaic power generation power prediction artificial intelligence algorithm
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
19
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated photovoltaics (VIpv) VIpv-powered Electric Vehicles Driving Distance pv Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Calculation Method and Analysis for the Annual Power Generation of PV Faades in China
20
作者 Shen Xu Zhong-Ming Hu +2 位作者 Jian Kang Wei Liao Jing Huang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2014年第4期62-68,共7页
The application of PV facades emerges greatly in recent years and however its calculation methods and analysis remains insufficient under the weather conditions of China. In such demand, this paper investigates PV fac... The application of PV facades emerges greatly in recent years and however its calculation methods and analysis remains insufficient under the weather conditions of China. In such demand, this paper investigates PV facade in terms of PV electricity generation in different arrangements and weather conditions of four major cities in China. The calculation models for PV facade are developed and validated by comparing the results with the measured data from the field experiments. A parametric study is carried out to provide a reference for the optimal design of the PV facades. The results show that with various cities, building orientations, building forms, materials and arrangements of PV modules, there is a distinct difference in the electrical output energy of PV facades. Weather conditions nlav a very important role in terms of PV generation nerformance of PV facades. 展开更多
关键词 pv facade Calculation model pv power generation Parametric study
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部