Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar ra...Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar radiation, air pollution and cloud movements), load profile and the tilt and orientation angles. This paper describes an experimental analysis of maximizing output power of a photovoltaic panel, based on the use of existing equations of tilt angles derived from mathematical models and simulation packages. Power regulation is achieved by the use of a DC-DC converter, a fixed load resistance and a single photovoltaic panel. A data logger is used to make repeated measurements which ensure reliability of the results. The results of the paper were taken over a four month period from April through July. The photovoltaic panel was set to an orientation angle of 0? with tilt angles of 16?, 26? and 36?. Preliminary results indicate that tilt angles between 26? and 36? provide optimum photovoltaic output power for winter months in South Africa.展开更多
In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on b...In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on building structures or large photovoltaic power plants located in that geographical area. Indeed, the area of southern Italy and in particular Sicily and Calabria are the top of European locations for acquiring solar energy. Some models of diffuse solar irradiance were taken into account to determine panels inclinations that maximized the impinging solar radiation by means of global horizontal solar radiation data provided from the Italian Institute of ENEA (Italy). An algorithm was used for the simulation providing a set of tilt angles for each latitude. The optimum tilt angle values obtained from the simulation resulted to be strictly related to the model of diffuse solar radiation that was used. Indeed, the disagreement between the values obtained using anisotropic models of diffuse solar radiation and those obtained from the isotropic model resulted to decrease significantly with increasing solar declination, showing that the isotropic model can be reliable only in summer months.展开更多
[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar ener...[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.展开更多
文摘Optimizing the output power of a photovoltaic panel improves the efficiency of a solar driven energy system. The maximum output power of a photovoltaic panel depends on atmospheric conditions, such as (direct solar radiation, air pollution and cloud movements), load profile and the tilt and orientation angles. This paper describes an experimental analysis of maximizing output power of a photovoltaic panel, based on the use of existing equations of tilt angles derived from mathematical models and simulation packages. Power regulation is achieved by the use of a DC-DC converter, a fixed load resistance and a single photovoltaic panel. A data logger is used to make repeated measurements which ensure reliability of the results. The results of the paper were taken over a four month period from April through July. The photovoltaic panel was set to an orientation angle of 0? with tilt angles of 16?, 26? and 36?. Preliminary results indicate that tilt angles between 26? and 36? provide optimum photovoltaic output power for winter months in South Africa.
文摘In this paper a simulation to maximize the global solar radiation on a sloped collecting surface was applied to typical latitudes in the area of southern Italy, to calculate the optimum tilt angle of solar panels on building structures or large photovoltaic power plants located in that geographical area. Indeed, the area of southern Italy and in particular Sicily and Calabria are the top of European locations for acquiring solar energy. Some models of diffuse solar irradiance were taken into account to determine panels inclinations that maximized the impinging solar radiation by means of global horizontal solar radiation data provided from the Italian Institute of ENEA (Italy). An algorithm was used for the simulation providing a set of tilt angles for each latitude. The optimum tilt angle values obtained from the simulation resulted to be strictly related to the model of diffuse solar radiation that was used. Indeed, the disagreement between the values obtained using anisotropic models of diffuse solar radiation and those obtained from the isotropic model resulted to decrease significantly with increasing solar declination, showing that the isotropic model can be reliable only in summer months.
基金Supported by Shandong Meteorological Bureau Key Project (2010sdqxj105)~~
文摘[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.