期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Intelligent algorithm-based maximum power point tracker for an off-grid photovoltaic-powered direct-current irrigation system 被引量:1
1
作者 Hussain Attia Maen Takruri Ali Al-Ataby 《Clean Energy》 EI CSCD 2024年第3期48-61,共14页
This research aims to enhance the performance of photovoltaic(PV)systems on a 2-fold basis.Firstly,it introduces an advanced deep artificial neural network algorithm for accurate and fast maximum power point tracking,... This research aims to enhance the performance of photovoltaic(PV)systems on a 2-fold basis.Firstly,it introduces an advanced deep artificial neural network algorithm for accurate and fast maximum power point tracking,ensuring optimal extraction of electrical power from PV arrays.Secondly,it proposes the use of 96-V,2.98-kW direct-current(DC)water pumps for farm irrigation,aiming to improve efficiency,reduce cost and complexity,and overcome challenges associated with connecting faraway farm irrigation systems to the utility grid.In this study,it has been demonstrated that the use of DC pumps greatly improves system performance and efficiency by eliminating the need for isolation transformers,power passive filters and inverters,therefore simplifying the architecture of the system.The efficacy of the proposed methodology is confirmed by MATLAB®/Simulink®simulation results,whereby the proposed algorithm attains a mean squared error of 6.5705×10^(-5)and a system efficiency approaching 99.8%,ensuring a steady voltage under varying load conditions. 展开更多
关键词 artificial neural network photovoltaic arrays maximum power point tracking buck converter direct-current irrigation systems MATLAB/SIMULINK
原文传递
Coordinated voltage control of renewable energy power plants in weak sending-end power grid
2
作者 Yongning Chi Weihao Li +1 位作者 Qiuwei Wu Chao Liu 《Global Energy Interconnection》 2020年第4期365-374,共10页
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co... The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant. 展开更多
关键词 Coordinated voltage control Model predictive control(MPC) Renewable energy Weak sending-end power grid Wind turbine generators(WTGs) photovoltaic arrays(PVAs) STATCOM
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部