Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are s...Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources.However,there are challenges in building models through centralized shared data due to data privacy concerns and industry competition.Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally.In this paper,we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model.We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach.Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy,and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.展开更多
Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challeng...Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits.Existing PV forecasting techniques(sequential and convolutional neural networks(CNN))are sensitive to environmental conditions,reducing energy distribution system performance.To handle these issues,this article proposes an efficient,weather-resilient convolutional-transformer-based network(CT-NET)for accurate and efficient PV power forecasting.The network consists of three main modules.First,the acquired PV generation data are forwarded to the pre-processing module for data refinement.Next,to carry out data encoding,a CNNbased multi-head attention(MHA)module is developed in which a single MHA is used to decode the encoded data.The encoder module is mainly composed of 1D convolutional and MHA layers,which extract local as well as contextual features,while the decoder part includes MHA and feedforward layers to generate the final prediction.Finally,the performance of the proposed network is evaluated using standard error metrics,including the mean squared error(MSE),root mean squared error(RMSE),and mean absolute percentage error(MAPE).An ablation study and comparative analysis with several competitive state-of-the-art approaches revealed a lower error rate in terms of MSE(0.0471),RMSE(0.2167),and MAPE(0.6135)over publicly available benchmark data.In addition,it is demonstrated that our proposed model is less complex,with the lowest number of parameters(0.0135 M),size(0.106 MB),and inference time(2 ms/step),suggesting that it is easy to integrate into the smart grid.展开更多
Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression w...Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.展开更多
Photovoltaic(PV)systems are widely spread across MV and LV distribution systems and the penetration of PV generation is solidly growing.Because of the uncertain nature of the solar energy resource,PV power forecasting...Photovoltaic(PV)systems are widely spread across MV and LV distribution systems and the penetration of PV generation is solidly growing.Because of the uncertain nature of the solar energy resource,PV power forecasting models are crucial in any energy management system for smart distribution networks.Although point forecasts can suit many scopes,probabilistic forecasts add further flexibility to an energy management system and are recommended to enable a wider range of decision making and optimization strategies.This paper proposes methodology towards probabilistic PV power forecasting based on a Bayesian bootstrap quantile regression model,in which a Bayesian bootstrap is applied to estimate the parameters of a quantile regression model.A novel procedure is presented to optimize the extraction of the predictive quantiles from the bootstrapped estimation of the related coefficients,raising the predictive ability of the final forecasts.Numerical experiments based on actual data quantify an enhancement of the performance of up to 2.2%when compared to relevant benchmarks.展开更多
Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smar...Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.展开更多
High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,a...High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,and economic operation of PV systems.This paper proposes a hybrid model based on principal component analysis,grey wolf optimization and generalized regression neural network(PCA-GWO-GRNN)for day-ahead short-term PV output forecasting,considering the features of multiple influencing factors and strong uncertainty.This paper first uses the PCA to reduce the dimension of meteorological features.Then,the high-precision day-ahead short-term PV output forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after dimension reduction,and the parameter of GRNN is optimized by using GWO,which has strong global searching ability and fast convergence.The proposed PCA-GWO-GRNN model effectively achieves a high precision in day-ahead shortterm PV output forecasting,which is demonstrated in a case study on a real PV plant in Jiangsu province,China.The results have validated the accuracy and applicability of the proposed model in real scenarios.展开更多
Accurate photovoltaic(PV)power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency.This paper proposes an ultra-short-term ...Accurate photovoltaic(PV)power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency.This paper proposes an ultra-short-term hybrid photovoltaic power forecasting method based on a dendritic neural model(DNM)in this paper.This model is trained using improved biogeography-based optimization(IBBO),a technique that incorporates a domestication operation to increase the performance of classical biogeography-based optimization(BBO).To be more precise,a similar day selection(SDS)technique is presented for selecting the training set,and wavelet packet transform(WPT)is used to divide the input data into many components.IBBO is then used to train DNM weights and thresholds for each component prediction.Finally,each component’s prediction results are stacked and reassembled.The suggested hybrid model is used to forecast PV power under various weather conditions using data from the Desert Knowledge Australia Solar Centre(DKASC)in Alice Springs.Simulation results indicate the proposed hybrid SDS and WPT-IBBO-DNM model has the lowest error of any of the benchmark models and hence has the potential to considerably enhance the accuracy of solar power forecasting(PVPF).展开更多
基金The research is supported by the National Natural Science Foundation of China(62072469)the National Key R&D Program of China(2018AAA0101502)+2 种基金Shandong Natural Science Foundation(ZR2019MF049)West Coast artificial intelligence technology innovation center(2019-1-5,2019-1-6)the Opening Project of Shanghai Trusted Industrial Control Platform(TICPSH202003015-ZC).
文摘Accurate forecasting for photovoltaic power generation is one of the key enablers for the integration of solar photovoltaic systems into power grids.Existing deep-learning-based methods can perform well if there are sufficient training data and enough computational resources.However,there are challenges in building models through centralized shared data due to data privacy concerns and industry competition.Federated learning is a new distributed machine learning approach which enables training models across edge devices while data reside locally.In this paper,we propose an efficient semi-asynchronous federated learning framework for short-term solar power forecasting and evaluate the framework performance using a CNN-LSTM model.We design a personalization technique and a semi-asynchronous aggregation strategy to improve the efficiency of the proposed federated forecasting approach.Thorough evaluations using a real-world dataset demonstrate that the federated models can achieve significantly higher forecasting performance than fully local models while protecting data privacy,and the proposed semi-asynchronous aggregation and the personalization technique can make the forecasting framework more robust in real-world scenarios.
基金supported by the National Research Foundation of Korea (NRF)grant funded by the Korean government (MSIT) (No.2019M3F2A1073179).
文摘Photovoltaic(PV)systems are environmentally friendly,generate green energy,and receive support from policies and organizations.However,weather fluctuations make large-scale PV power integration and management challenging despite the economic benefits.Existing PV forecasting techniques(sequential and convolutional neural networks(CNN))are sensitive to environmental conditions,reducing energy distribution system performance.To handle these issues,this article proposes an efficient,weather-resilient convolutional-transformer-based network(CT-NET)for accurate and efficient PV power forecasting.The network consists of three main modules.First,the acquired PV generation data are forwarded to the pre-processing module for data refinement.Next,to carry out data encoding,a CNNbased multi-head attention(MHA)module is developed in which a single MHA is used to decode the encoded data.The encoder module is mainly composed of 1D convolutional and MHA layers,which extract local as well as contextual features,while the decoder part includes MHA and feedforward layers to generate the final prediction.Finally,the performance of the proposed network is evaluated using standard error metrics,including the mean squared error(MSE),root mean squared error(RMSE),and mean absolute percentage error(MAPE).An ablation study and comparative analysis with several competitive state-of-the-art approaches revealed a lower error rate in terms of MSE(0.0471),RMSE(0.2167),and MAPE(0.6135)over publicly available benchmark data.In addition,it is demonstrated that our proposed model is less complex,with the lowest number of parameters(0.0135 M),size(0.106 MB),and inference time(2 ms/step),suggesting that it is easy to integrate into the smart grid.
文摘Accurate photovoltaic(PV)energy forecasting plays a crucial role in the efficient operation of PV power stations.This study presents a novel hybrid machine-learning(ML)model that combines Gaussian process regression with wavelet packet decomposition to forecast PV power half an hour ahead.The proposed technique was applied to the PV energy database of a station located in Algeria and its performance was compared to that of traditional forecasting models.Performance evaluations demonstrate the superiority of the proposed approach over conventional ML methods,including Gaussian process regression,extreme learning machines,artificial neural networks and support vector machines,across all seasons.The proposed model exhibits lower normalized root mean square error(nRMSE)(2.116%)and root mean square error(RMSE)(208.233 kW)values,along with a higher coefficient of determination(R^(2))of 99.881%.Furthermore,the exceptional performance of the model is maintained even when tested with various prediction horizons.However,as the forecast horizon extends from 1.5 to 5.5 hours,the prediction accuracy decreases,evident by the increase in the RMSE(710.839 kW)and nRMSE(7.276%),and a decrease in R2(98.462%).Comparative analysis with recent studies reveals that our approach consistently delivers competitive or superior results.This study provides empirical evidence supporting the effectiveness of the proposed hybrid ML model,suggesting its potential as a reliable tool for enhancing PV power forecasting accuracy,thereby contributing to more efficient grid management.
基金supported by the Swiss Federal Office of Energy(SFOE)and by the Italian Ministry of Education,University and Research(MIUR),through the ERA-NET Smart Energy Systems RegSys joint call 2018 project“DiGRiFlex-Real time Distribution GRid control and Flexibility provision under uncertainties.”。
文摘Photovoltaic(PV)systems are widely spread across MV and LV distribution systems and the penetration of PV generation is solidly growing.Because of the uncertain nature of the solar energy resource,PV power forecasting models are crucial in any energy management system for smart distribution networks.Although point forecasts can suit many scopes,probabilistic forecasts add further flexibility to an energy management system and are recommended to enable a wider range of decision making and optimization strategies.This paper proposes methodology towards probabilistic PV power forecasting based on a Bayesian bootstrap quantile regression model,in which a Bayesian bootstrap is applied to estimate the parameters of a quantile regression model.A novel procedure is presented to optimize the extraction of the predictive quantiles from the bootstrapped estimation of the related coefficients,raising the predictive ability of the final forecasts.Numerical experiments based on actual data quantify an enhancement of the performance of up to 2.2%when compared to relevant benchmarks.
基金supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA27000000)。
文摘Photovoltaic(PV)power forecasting is essential for secure operation of a power system.Effective prediction of PV power can improve new energy consumption capacity,help power system planning,promote development of smart grids,and ultimately support construction of smart energy cities.However,different from centralized PV power forecasts,three critical challenges are encountered in distributed PV power forecasting:1)lack of on-site meteorological observation,2)leveraging extraneous data to enhance forecasting performance,3)spatial-temporal modelling methods of meteorological information around the distributed PV stations.To address these issues,we propose a Graph Spatial-Temporal Attention Neural Network(GSTANN)to predict the very short-term power of distributed PV.First,we use satellite remote sensing data covering a specific geographical area to supplement meteorological information for all PV stations.Then,we apply the graph convolution block to model the non-Euclidean local and global spatial dependence and design an attention mechanism to simultaneously derive temporal and spatial correlations.Subsequently,we propose a data fusion module to solve the time misalignment between satellite remote sensing data and surrounding measured on-site data and design a power approximation block to map the conversion from solar irradiance to PV power.Experiments conducted with real-world case study datasets demonstrate that the prediction performance of GSTANN outperforms five state-of-the-art baselines.
基金supported by the National Key Research and Development Program of China(No.2018YFB1500800)the National Natural Science Foundation of China(No.51807134)
文摘High-precision day-ahead short-term photovoltaic(PV)output forecasting is essential in PV integration to the smart distribution networks and multi-energy system,and provides the foundation for the security,stability,and economic operation of PV systems.This paper proposes a hybrid model based on principal component analysis,grey wolf optimization and generalized regression neural network(PCA-GWO-GRNN)for day-ahead short-term PV output forecasting,considering the features of multiple influencing factors and strong uncertainty.This paper first uses the PCA to reduce the dimension of meteorological features.Then,the high-precision day-ahead short-term PV output forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after dimension reduction,and the parameter of GRNN is optimized by using GWO,which has strong global searching ability and fast convergence.The proposed PCA-GWO-GRNN model effectively achieves a high precision in day-ahead shortterm PV output forecasting,which is demonstrated in a case study on a real PV plant in Jiangsu province,China.The results have validated the accuracy and applicability of the proposed model in real scenarios.
基金This work was supported in part by Guangxi University(No.A3020051008)in part by the National Key Research and Development Program of China(No.2019YFE0118000)。
文摘Accurate photovoltaic(PV)power prediction has been a subject of ongoing study in order to address grid stability concerns caused by PV output unpredictability and intermittency.This paper proposes an ultra-short-term hybrid photovoltaic power forecasting method based on a dendritic neural model(DNM)in this paper.This model is trained using improved biogeography-based optimization(IBBO),a technique that incorporates a domestication operation to increase the performance of classical biogeography-based optimization(BBO).To be more precise,a similar day selection(SDS)technique is presented for selecting the training set,and wavelet packet transform(WPT)is used to divide the input data into many components.IBBO is then used to train DNM weights and thresholds for each component prediction.Finally,each component’s prediction results are stacked and reassembled.The suggested hybrid model is used to forecast PV power under various weather conditions using data from the Desert Knowledge Australia Solar Centre(DKASC)in Alice Springs.Simulation results indicate the proposed hybrid SDS and WPT-IBBO-DNM model has the lowest error of any of the benchmark models and hence has the potential to considerably enhance the accuracy of solar power forecasting(PVPF).