In the last few years,organic solar cells(OSCs)have made significant progress in photovoltaic performance,mainly due to the innovative development of active layer materials,especially Y-series and related derivatives ...In the last few years,organic solar cells(OSCs)have made significant progress in photovoltaic performance,mainly due to the innovative development of active layer materials,especially Y-series and related derivatives as acceptors which have become the key factor that boosts the power conversion efficiency.Recently,to achieve high-performance OSCs,an emerging molecular design strategy of applying flexible alkyl units as linkers to construct non-fully conjugated acceptors has been developed and addressed great attention.This review highlights the non-fully conjugated photovoltaic materials with Y-series backbone that enable high-performance OSCs.Impressive OSCs have been achieved by some representative non-fully conjugated material systems.The related molecular design strategies are discussed in detail.Finally,a brief summary and future prospect are provided in advancing the non-fully conjugated photovoltaic materials with Y-series backbone towards the brighter future.展开更多
Benefitting from low cost and simple synthesis,simple structured non-fused ring acceptors(NFRAs)and polymer donors are crucial for the application of organic solar cells(OSCs).Herein,two isomerized NFRAs,namely 4T-FCl...Benefitting from low cost and simple synthesis,simple structured non-fused ring acceptors(NFRAs)and polymer donors are crucial for the application of organic solar cells(OSCs).Herein,two isomerized NFRAs,namely 4T-FCl FCl and 4T-2F2Cl,are designed with end-group engineering,which modulates the electrostatic potential distributions and crystallinity of acceptors,and accordingly,the A/A and D/A intermolecular interactions.The OSC based on 4T-2F2Cl with strong D/A interactions shows a record-high efficiency of 16.31%in blending with a low-cost polymer donor PTQ10,which shapes obviously improved bulkheterojunction(BHJ)networks blade-coated by non-halogenated solvent o-xylene,and thus significantly diminishes nonradiative recombination loss.A higher industrial figure of merit(i-FOM)of 0.46 for PTQ10:4T-2F2Cl in comparison with PTQ10:4T-FCl FCl(i-FOM=0.29)is demonstrated owing to its superior device efficiency and operational stability.Note that the i-FOM of PTQ10:4T-2F2Cl is the highest value for OSCs reported so far.This work deepens the synergistic effect of the A/A and D/A interactions on achieving desired bulk heterojunction morphology and demonstrates a printable photovoltaic system for low-cost,high-efficiency,stable,and eco-friendly OSCs.展开更多
Over last decades,the development of new organic materials has contributed to the rapid increase of high-power conversion efficiency of photovoltaic cells.At this stage,to understand the structure and the dynamic of m...Over last decades,the development of new organic materials has contributed to the rapid increase of high-power conversion efficiency of photovoltaic cells.At this stage,to understand the structure and the dynamic of materials is of significant importance for designing novel low-cost photovoltaic cells with superior performance.Neutron scattering is a powerful tool to provide unique and non-destructive information for the organic photovoltaic materials with particular advantages of addressing different parts of organic system by deuterium or tritium substitution.In addition,by employing several neutron scattering methods together,it is possible to further access the static structure and dynamic relaxation of the materials.With this perspective review,we introduce three neutron scattering techniques,including neutron reflectivity,small angle neutron scattering,grazing incidence small angle neutron scattering and quasi-elastic neutron scattering,and their applications on the organic photovoltaic materials.展开更多
In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively ...In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.展开更多
We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and fi...We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1?x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 e V as the ratio x changes in 2D SixC1?x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1?x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1?x have profound implications in nanoelectronic and photovoltaic device applications.展开更多
The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is ...The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.展开更多
To overcome the aggregation of nanocrystals in a blend of inorganic material with conjugated polymers to prepare photovoltaic material, we used a co-solvent blend of CHCl3 with MeOH at a certain volume fraction to dis...To overcome the aggregation of nanocrystals in a blend of inorganic material with conjugated polymers to prepare photovoltaic material, we used a co-solvent blend of CHCl3 with MeOH at a certain volume fraction to disperse inorganic nanocrystals. The results show that when the volume fraction of MeOH is 50%, ZnO nanocrystals with an average diameter of 30 nm disperse well in the co-solvent solution. Its application in photovoltaic material was investigated in this work, and the photoluminescence(PL) spectra show that when ZnO was 50%(volume fraction) in solution and 25%(volume fraction) in film, the fluorescence quenching reached the maximum values 83.34% and 64.4%, respectively, indicating that electron could transfer from conjugated polymer to electron-acceptor ZnO effectively.展开更多
Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delive...Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.展开更多
Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of...Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.展开更多
In recent years, the performance of organic thinfilm solar cells has gained rapid progress, of which the power conversion efficiencies (r/p) of 3%-5% are commonly achieved, which were difficult to obtain years ago a...In recent years, the performance of organic thinfilm solar cells has gained rapid progress, of which the power conversion efficiencies (r/p) of 3%-5% are commonly achieved, which were difficult to obtain years ago and are improving steadily now. The r/p of 7.4% was achieved in the year 2010, and r/p of 9.2% was disclosed and confirmed at website of Mitsubishi Chemical in April, 2011. The promising future is that the r/p of 10% is achievable according to simulation results. Apparently, these are attributed to material innovations, new device structures, and also the better understanding of device physics. This article summarizes recent progress in organic thinfilm solar cells related to materials, device structures and working principles. In the device functioning part, after each brief summary of the working principle, the methods for improvements, such as absorption increment, organic/electrode interface engineering, morphological issues, are addressed and summarized accordingly. In addition, for the purpose of increasing exciton diffusion efficiency, the benefit from triplet exciton, which has been proposed in recent years, is highlighted. In the active material parts, the chemical nature of materials and its impact on device performance are discussed. Particularly, emphasis is given toward the insight for better understanding device physics as well as improvements in device performance either by development of new materials or by new device architecture.展开更多
Organic solar cells(OSCs) have garnered significant attention as a novel photovoltaic technology and have been extensively investigated. In recent years, OSCs have made rapid strides in power conversion efficiency(PCE...Organic solar cells(OSCs) have garnered significant attention as a novel photovoltaic technology and have been extensively investigated. In recent years, OSCs have made rapid strides in power conversion efficiency(PCE), demonstrating their significant potential in practical applications. In addition to high PCE, the practical application of OSCs demands a prolonged operating lifespan. The rational design of materials and devices to achieve efficient and stable OSCs is pivotal. This feature article presents a thorough analysis of our group's studies on enhancing efficiency and stability through material and device design. We introduce a range of exceptional chlorine-mediated organic photovoltaic materials and systematically summarize chlorine atom(Cl) induced effects on energy levels, molecular stacking, active layer film morphology and photovoltaic performance. Furthermore, the use of single-crystal diffraction technology allows for a comprehensive understanding of intermolecular packing and interaction at the molecular level. A series of highly efficient non-fullerene acceptors(NFAs) with threedimensional(3D) network packing structures are developed and discussed. Subsequently, based on efficient 3D network brominated NFAs, the studies on polymer and oligomer acceptor materials are carried out and achieve efficient and stable OSCs.In addition to materials design, the development of the “quasiplanar heterojunction”(Q-PHJ) based OSC device also plays an important role in achieving superior efficiency and stability. These design experiences of materials and devices hope to provide valuable guidance for the development of efficient and stable OSCs.展开更多
During past several years,the photovoltaic performances of organic solar cells(OSCs)have achieved rapid progress with power conversion efficiencies(PCEs)over 18%,demonstrating a great practical application prospect.Th...During past several years,the photovoltaic performances of organic solar cells(OSCs)have achieved rapid progress with power conversion efficiencies(PCEs)over 18%,demonstrating a great practical application prospect.The development of material science including conjugated polymer donors,oligomer-like organic molecule donors,fused and nonfused ring acceptors,polymer acceptors,single-component organic solar cells and water/alcohol soluble interface materials are the key research topics in OSC field.Herein,the recent progress of these aspects is systematically summarized.Meanwhile,the current problems and future development are also discussed.展开更多
Three novel conjugated polymers bearing 3,4-bis(4-hexylthiophen-2-yl)-3-cyclobutene-1,2-dione unit in their main chain have been synthesized successfully in good yields through Suzuki or Stille coupling reaction.The...Three novel conjugated polymers bearing 3,4-bis(4-hexylthiophen-2-yl)-3-cyclobutene-1,2-dione unit in their main chain have been synthesized successfully in good yields through Suzuki or Stille coupling reaction.Their molecular structures have been confirmed by FT-IR,~1H NMR and ^(13)C NMR.All these copolymers exhibit broad and strong absorption bands in UV-vis region,and their optical band gaps are calculated to be 1.6-2.0 eV.suggesting that they have good coverage with the solar spectrum.These polymers have good thermostability and solubility in common organic solvents.Moreover,all these objective macromolecules possess high electron affinity of~3.8 eV determined from cyclic voltammetry measurement,implying that they are potential n-type polymeric photovoltaic materials.展开更多
The electronic structure characters are calculated for the Zn1-∞MxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an interme...The electronic structure characters are calculated for the Zn1-∞MxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an intermediate band material used for fabricating high efficiency solar cell. Especially, among of these alloys, the electronic structure character and optical performance of Zn1-xCr∞ 0 alloys clearly show an intermediate band filled partially and isolated from the VB and the CB in energy band structure of ZnO host, and the intermediate band characters can be preserved with increasing Cr concentrations no more than 8.33% in Zn1-xCrxO alloys, at the same time, the ratio 0.52 of Eg^FC to EVE in Zn1-xCrxO, (x = 4.16%) alloy is closest to the optimal ratio of 0,57. Besides, compared to the ZnO, the optical absorption does indicate a great improved absorption below the calculated band gap of the ZnO and an enhancement of the optical absorption in the whole solar spectral energy range.展开更多
基金support from the NSFC(22209131,21875182,52173023 and 51973146)National Key Research and Development Program of China(2022YFE0132400)+3 种基金Key Scientific and Technological Innovation Team Project of Shaanxi Province(2020TD-002)111 Project 2.0(BP0618008)Shandong Provincial Natural Science Foundation(ZR2022JQ09)Postdoctoral Innovation Talents Support Program(BX20230285).
文摘In the last few years,organic solar cells(OSCs)have made significant progress in photovoltaic performance,mainly due to the innovative development of active layer materials,especially Y-series and related derivatives as acceptors which have become the key factor that boosts the power conversion efficiency.Recently,to achieve high-performance OSCs,an emerging molecular design strategy of applying flexible alkyl units as linkers to construct non-fully conjugated acceptors has been developed and addressed great attention.This review highlights the non-fully conjugated photovoltaic materials with Y-series backbone that enable high-performance OSCs.Impressive OSCs have been achieved by some representative non-fully conjugated material systems.The related molecular design strategies are discussed in detail.Finally,a brief summary and future prospect are provided in advancing the non-fully conjugated photovoltaic materials with Y-series backbone towards the brighter future.
基金supported by the National Natural Science Foundation of China(52061135206,22279094)the Fundamental Research Funds for the Central Universities。
文摘Benefitting from low cost and simple synthesis,simple structured non-fused ring acceptors(NFRAs)and polymer donors are crucial for the application of organic solar cells(OSCs).Herein,two isomerized NFRAs,namely 4T-FCl FCl and 4T-2F2Cl,are designed with end-group engineering,which modulates the electrostatic potential distributions and crystallinity of acceptors,and accordingly,the A/A and D/A intermolecular interactions.The OSC based on 4T-2F2Cl with strong D/A interactions shows a record-high efficiency of 16.31%in blending with a low-cost polymer donor PTQ10,which shapes obviously improved bulkheterojunction(BHJ)networks blade-coated by non-halogenated solvent o-xylene,and thus significantly diminishes nonradiative recombination loss.A higher industrial figure of merit(i-FOM)of 0.46 for PTQ10:4T-2F2Cl in comparison with PTQ10:4T-FCl FCl(i-FOM=0.29)is demonstrated owing to its superior device efficiency and operational stability.Note that the i-FOM of PTQ10:4T-2F2Cl is the highest value for OSCs reported so far.This work deepens the synergistic effect of the A/A and D/A interactions on achieving desired bulk heterojunction morphology and demonstrates a printable photovoltaic system for low-cost,high-efficiency,stable,and eco-friendly OSCs.
基金supported by the National Natural Science Foundation of China(No.12105306,52072008 and U2032167)Guangdong Natural Science Foundation(No.2019A1515111028)+1 种基金Xiejialin Foundation in the Institute of High Energy Physics(No.E15466U210)National Key R&D Projects(2022YFA1604103 and 2020YFA0406203).
文摘Over last decades,the development of new organic materials has contributed to the rapid increase of high-power conversion efficiency of photovoltaic cells.At this stage,to understand the structure and the dynamic of materials is of significant importance for designing novel low-cost photovoltaic cells with superior performance.Neutron scattering is a powerful tool to provide unique and non-destructive information for the organic photovoltaic materials with particular advantages of addressing different parts of organic system by deuterium or tritium substitution.In addition,by employing several neutron scattering methods together,it is possible to further access the static structure and dynamic relaxation of the materials.With this perspective review,we introduce three neutron scattering techniques,including neutron reflectivity,small angle neutron scattering,grazing incidence small angle neutron scattering and quasi-elastic neutron scattering,and their applications on the organic photovoltaic materials.
基金supported by the National Basic Research Program of China(2014CB643501)the National Natural Science Foundation of China(91433117,91333204 and 21374124)
文摘In recent years,conjugated polymers have attracted great attention in the application as photovoltaic donor materials in polymer solar cells(PSCs).Broad absorption,lower-energy bandgap,higher hole mobility,relatively lower HOMO energy levels,and higher solubility are important for the conjugated polymer donor materials to achieve high photovoltaic performance.Side-chain engineering plays a very important role in optimizing the physicochemical properties of the conjugated polymers.In this article,we review recent progress on the side-chain engineering of conjugated polymer donor materials,including the optimization of flexible side-chains for balancing solubility and intermolecular packing(aggregation),electron-withdrawing substituents for lowering HOMO energy levels,and two-dimension(2D)-conjugated polymers with conjugated side-chains for broadening absorption and enhancing hole mobility.After the molecular structural optimization by side-chain engineering,the2D-conjugated polymers based on benzodithiophene units demonstrated the best photovoltaic performance,with powerconversion efficiency higher than 9%.
基金supported by Ministry of Science and Technology(Grant No.2012CB921403)the National Natural Science Foundation of China(Grant Nos.11304176 and 11334011)"Strategic Priority Research Program B"of the Chinese Academy of Sciences(Grant No.XDB07030100)
文摘We predict a series of new two-dimensional(2D) inorganic materials made of silicon and carbon elements(2D SixC1?x) based on density functional theory. Our calculations on optimized structure, phonon dispersion, and finite temperature molecular dynamics confirm the stability of 2D SixC1?x sheets in a two-dimensional, graphene-like, honeycomb lattice. The electronic band gaps vary from zero to 2.5 e V as the ratio x changes in 2D SixC1?x changes, suggesting a versatile electronic structure in these sheets. Interestingly, among these structures Si0.25C0.75 and Si0.75C0.25 with graphene-like superlattices are semimetals with zero band gap as their ? and ?* bands cross linearly at the Fermi level. Atomic structural searches based on particle-swarm optimization show that the ordered 2D SixC1?x structures are energetically favorable. Optical absorption calculations demonstrate that the 2D silicon-carbon hybrid materials have strong photoabsorption in visible light region, which hold promising potential in photovoltaic applications. Such unique electronic and optical properties in 2D SixC1?x have profound implications in nanoelectronic and photovoltaic device applications.
基金supported by the National Key Research and Development Program of China(grant no.2018YFA0208701)National Natural Science Foundation of China(grant no.21773308)+6 种基金Research Funds of Renmin University of China(grant nos.2017030013,201903020,and 20XNH059)Fundamental Research Funds for Central Universities(China)supported by the Solar Energy Research Institute of Singapore(SERIS)at the National University of Singapore(NUS)supported by NUS,the National Research Foundation Singapore(NRF),the Energy Market Authority of Singapore(EMA),and the Singapore Economic Development Board(EDB)the experimental support from Suzhou Fangsheng FS-300funding from Deutsche Forschungsge-meinschaft(DFG)via Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)as well as from TUM.solar in the context of the Bavarian Collaborative Research Project Solar Technologies Go Hybrid(SoITech)the China Scholarship Council(CSC)funding
文摘The improvement in the efficiency of inverted perovskite solar cells(PSCs)is significantly limited by undesirable contact at the NiO_(x)/perovskite interface.In this study,a novel microstructure-control technology is proposed for fabrication of porous NiO_(x)films using Pluronic P123 as the structure-directing agent and acetylacetone(AcAc)as the coordination agent.The synthesized porous NiO_(x)films enhanced the hole extraction efficiency and reduced recombination defects at the NiO_(x)/perovskite interface.Consequently,without any modification,the power conversion efficiency(PCE)of the PSC with MAPbl_(3)as the absorber layer improved from 16.50%to 19.08%.Moreover,the PCE of the device composed of perovskite Cs0.05(MA_(0.15)FA_(0.85))_(0.95)Pb(I_(0.85)Br_(0.15))_(3)improved from 17.49%to 21.42%.Furthermore,the application of the fabricated porous NiO_(x)on fluorine-doped tin oxide(FTO)substrates enabled the fabrication of large-area PSCs(1.2 cm^(2))with a PCE of 19.63%.This study provides a novel strategy for improving the contact at the NiO_(x)/perovskite interface for the fabrication of high-performance large-area perovskite solar cells.
基金Supported by the National Program on Key Basic Research Project of China(No.2010CB635111)the Doctorate Foundation of Northwestern Polytechnical University,China(No.CX201118)
文摘To overcome the aggregation of nanocrystals in a blend of inorganic material with conjugated polymers to prepare photovoltaic material, we used a co-solvent blend of CHCl3 with MeOH at a certain volume fraction to disperse inorganic nanocrystals. The results show that when the volume fraction of MeOH is 50%, ZnO nanocrystals with an average diameter of 30 nm disperse well in the co-solvent solution. Its application in photovoltaic material was investigated in this work, and the photoluminescence(PL) spectra show that when ZnO was 50%(volume fraction) in solution and 25%(volume fraction) in film, the fluorescence quenching reached the maximum values 83.34% and 64.4%, respectively, indicating that electron could transfer from conjugated polymer to electron-acceptor ZnO effectively.
基金supported by the National Natural Science Foundation of China(Nos.61325026,51503209)the Natural Science Foundation of Fujian Province(No.2015H0050)
文摘Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.
基金the National Natural Science Foundation of China(NSFC)(Grant No.12074126)the Foundation for Innovative Research Groups of NSFC(Grant No.51621001)the Fundamental Research Funds for the Central Universities(Grant No.2020ZYGXZR076).
文摘Two-dimensional(2D)ferroelectric compounds are a special class of materials that meet the need for devices miniaturization,which can lead to a wide range of applications.Here,we investigate ferroelectric properties of monolayer group-IV monochalcogenides MX(M=Sn,Ge;X=Se,Te,S)via strain engineering,and their effects with contaminated hydrogen are also discussed.GeSe,GeTe,and GeS do not go through transition up to the compressive strain of-5%,and consequently have good ferroelectric parameters for device applications that can be further improved by applying strain.According to the calculated ferroelectric properties and the band gaps of these materials,we find that their band gap can be adjusted by strain for excellent photovoltaic applications.In addition,we have determined the most stable hydrogen occupancy location in the monolayer SnS and SnTe.It reveals that H prefers to absorb on SnS and SnTe monolayers as molecules rather than atomic H.As a result,hydrogen molecules have little effect on the polarization and electronic structure of monolayer SnTe and SnS.
基金supported by the National Natural Science Foundation of China (20974046, 61077021 & 61076016)New Century Excellent Talents funding from Ministry of Education of China (NCET-08-0697)National Basic Research Program of China (973 Program, 2009CB930600)
文摘In recent years, the performance of organic thinfilm solar cells has gained rapid progress, of which the power conversion efficiencies (r/p) of 3%-5% are commonly achieved, which were difficult to obtain years ago and are improving steadily now. The r/p of 7.4% was achieved in the year 2010, and r/p of 9.2% was disclosed and confirmed at website of Mitsubishi Chemical in April, 2011. The promising future is that the r/p of 10% is achievable according to simulation results. Apparently, these are attributed to material innovations, new device structures, and also the better understanding of device physics. This article summarizes recent progress in organic thinfilm solar cells related to materials, device structures and working principles. In the device functioning part, after each brief summary of the working principle, the methods for improvements, such as absorption increment, organic/electrode interface engineering, morphological issues, are addressed and summarized accordingly. In addition, for the purpose of increasing exciton diffusion efficiency, the benefit from triplet exciton, which has been proposed in recent years, is highlighted. In the active material parts, the chemical nature of materials and its impact on device performance are discussed. Particularly, emphasis is given toward the insight for better understanding device physics as well as improvements in device performance either by development of new materials or by new device architecture.
基金supported by the National Natural Science Foundation of China (22225504, 21975115)the Shenzhen Fundamental Research Program (JCYJ20200109140801751, JCYJ20210324120010028)+1 种基金the Shenzhen Science and Technology Innovation Commission (KQTD20170810111314625)the Guangdong Provincial Key Laboratory of Catalysis (2020B121201002)。
文摘Organic solar cells(OSCs) have garnered significant attention as a novel photovoltaic technology and have been extensively investigated. In recent years, OSCs have made rapid strides in power conversion efficiency(PCE), demonstrating their significant potential in practical applications. In addition to high PCE, the practical application of OSCs demands a prolonged operating lifespan. The rational design of materials and devices to achieve efficient and stable OSCs is pivotal. This feature article presents a thorough analysis of our group's studies on enhancing efficiency and stability through material and device design. We introduce a range of exceptional chlorine-mediated organic photovoltaic materials and systematically summarize chlorine atom(Cl) induced effects on energy levels, molecular stacking, active layer film morphology and photovoltaic performance. Furthermore, the use of single-crystal diffraction technology allows for a comprehensive understanding of intermolecular packing and interaction at the molecular level. A series of highly efficient non-fullerene acceptors(NFAs) with threedimensional(3D) network packing structures are developed and discussed. Subsequently, based on efficient 3D network brominated NFAs, the studies on polymer and oligomer acceptor materials are carried out and achieve efficient and stable OSCs.In addition to materials design, the development of the “quasiplanar heterojunction”(Q-PHJ) based OSC device also plays an important role in achieving superior efficiency and stability. These design experiences of materials and devices hope to provide valuable guidance for the development of efficient and stable OSCs.
基金supported by the National Natural Science Foundation of China(51933001,22109080,21734009,52173174)。
文摘During past several years,the photovoltaic performances of organic solar cells(OSCs)have achieved rapid progress with power conversion efficiencies(PCEs)over 18%,demonstrating a great practical application prospect.The development of material science including conjugated polymer donors,oligomer-like organic molecule donors,fused and nonfused ring acceptors,polymer acceptors,single-component organic solar cells and water/alcohol soluble interface materials are the key research topics in OSC field.Herein,the recent progress of these aspects is systematically summarized.Meanwhile,the current problems and future development are also discussed.
基金the financial supports of the National Natural Science Foundation of China(Nos 50803040 and 20872103)and Analytical & Testing Center of Sichuan University for NMR measurements
文摘Three novel conjugated polymers bearing 3,4-bis(4-hexylthiophen-2-yl)-3-cyclobutene-1,2-dione unit in their main chain have been synthesized successfully in good yields through Suzuki or Stille coupling reaction.Their molecular structures have been confirmed by FT-IR,~1H NMR and ^(13)C NMR.All these copolymers exhibit broad and strong absorption bands in UV-vis region,and their optical band gaps are calculated to be 1.6-2.0 eV.suggesting that they have good coverage with the solar spectrum.These polymers have good thermostability and solubility in common organic solvents.Moreover,all these objective macromolecules possess high electron affinity of~3.8 eV determined from cyclic voltammetry measurement,implying that they are potential n-type polymeric photovoltaic materials.
基金Supported by the State Key Program for Basic Research of China under Grant No.2006CB921803Project of High Technology Research&Development of China(Project No.2007AA03Z404)+1 种基金National Natural Science Foundation of China under Grant Nos.61274058,60990312,and 61025020Natural Science Foundation of Anhui Province under Grant No.1208085QF116
文摘The electronic structure characters are calculated for the Zn1-∞MxO alloys with some Zn atoms in ZnO substituted by 3d transition-metal atoms (M), in order to find out which of these alloys could provide an intermediate band material used for fabricating high efficiency solar cell. Especially, among of these alloys, the electronic structure character and optical performance of Zn1-xCr∞ 0 alloys clearly show an intermediate band filled partially and isolated from the VB and the CB in energy band structure of ZnO host, and the intermediate band characters can be preserved with increasing Cr concentrations no more than 8.33% in Zn1-xCrxO alloys, at the same time, the ratio 0.52 of Eg^FC to EVE in Zn1-xCrxO, (x = 4.16%) alloy is closest to the optimal ratio of 0,57. Besides, compared to the ZnO, the optical absorption does indicate a great improved absorption below the calculated band gap of the ZnO and an enhancement of the optical absorption in the whole solar spectral energy range.