期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Forecasting Model of Photovoltaic Power Based on KPCA-MCS-DCNN 被引量:1
1
作者 Huizhi Gou Yuncai Ning 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期803-822,共20页
Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy ... Accurate photovoltaic(PV)power prediction can effectively help the power sector to make rational energy planning and dispatching decisions,promote PV consumption,make full use of renewable energy and alleviate energy problems.To address this research objective,this paper proposes a prediction model based on kernel principal component analysis(KPCA),modified cuckoo search algorithm(MCS)and deep convolutional neural networks(DCNN).Firstly,KPCA is utilized to reduce the dimension of the feature,which aims to reduce the redundant input vectors.Then using MCS to optimize the parameters of DCNN.Finally,the photovoltaic power forecasting method of KPCA-MCS-DCNN is established.In order to verify the prediction performance of the proposed model,this paper selects a photovoltaic power station in China for example analysis.The results show that the new hybrid KPCA-MCS-DCNN model has higher prediction accuracy and better robustness. 展开更多
关键词 photovoltaic power prediction kernel principal component analysis modified cuckoo search algorithm deep convolutional neural networks
下载PDF
Multi-features fusion for short-term photovoltaic power prediction
2
作者 Ming Ma Xiaorun Tang +4 位作者 Qingquan Lv Jun Shen Baixue Zhu Jinqiang Wang Binbin Yong 《Intelligent and Converged Networks》 EI 2022年第4期311-324,共14页
In recent years,in order to achieve the goal of“carbon peaking and carbon neutralization”,many countries have focused on the development of clean energy,and the prediction of photovoltaic power generation has become... In recent years,in order to achieve the goal of“carbon peaking and carbon neutralization”,many countries have focused on the development of clean energy,and the prediction of photovoltaic power generation has become a hot research topic.However,many traditional methods only use meteorological factors such as temperature and irradiance as the features of photovoltaic power generation,and they rarely consider the multi-features fusion methods for power prediction.This paper first preprocesses abnormal data points and missing values in the data from 18 power stations in Northwest China,and then carries out correlation analysis to screen out 8 meteorological features as the most relevant to power generation.Next,the historical generating power and 8 meteorological features are fused in different ways to construct three types of experimental datasets.Finally,traditional time series prediction methods,such as Recurrent Neural Network(RNN),Convolution Neural Network(CNN)combined with eXtreme Gradient Boosting(XGBoost),are applied to study the impact of different feature fusion methods on power prediction.The results show that the prediction accuracy of Long Short-Term Memory(LSTM),stacked Long Short-Term Memory(stacked LSTM),Bi-directional LSTM(Bi-LSTM),Temporal Convolutional Network(TCN),and XGBoost algorithms can be greatly improved by the method of integrating historical generation power and meteorological features.Therefore,the feature fusion based photovoltaic power prediction method proposed in this paper is of great significance to the development of the photovoltaic power generation industry. 展开更多
关键词 meteorological factors multi-features fusion time series prediction photovoltaic power prediction
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部