<span style="font-family:Verdana;">Several studies on PV solar cells are found in</span> <span style="font-family:Verdana;"><span style="font-family:Verdana;"><...<span style="font-family:Verdana;">Several studies on PV solar cells are found in</span> <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">literature which use static models. Those models are mainly one-diode, two-diode or three-diode models. In the dynamic modelling</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> a variable parallel capacitance is incorporated. Unlike the previous studies which do not clearly establish a relationship between the capacitance and the voltage, in the present paper, the link between the capacitance and the voltage is investigated and established. In dynamic modelling investigated in this paper, the dynamic resistance is introduced in the modelling of the solar cell. It is introduced in the current-voltage characteristic. The value of the dynamic resistance is evaluated at the maximum po</span><span style="font-family:Verdana;">wer point and its effect on the maximum power is investigated. The study</span> <span style="font-family:Verdana;">shows for the first time, that the dynamic resistance must be introduced in</span> <span style="font-family:Verdana;">the current-voltage characteristic, because it has an influence on the PV cell </span><span style="font-family:Verdana;">output</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span>展开更多
According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers an...According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.展开更多
Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delive...Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.展开更多
CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption...CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2.展开更多
In recent years perovskite solar cells have attracted an increasing scientific and technological interest in the scientific community. It is important to know that the temperature is one of the factors which have a st...In recent years perovskite solar cells have attracted an increasing scientific and technological interest in the scientific community. It is important to know that the temperature is one of the factors which have a strong effect on the efficiency of perovskite solar cell. This study communicates a temperature analysis on the pho- tovoltaic parameters of CH3NH3Pbl3-based perovskite solar cell in a broad interval from 80 to 360 K. Strong temperature-dependent photovoltaic effects have been observed in the type of solar cell, which could be mainly attributed to CH3NH3PbI3, showing a ferroelectric-paraelectric phase transition at low temperature (T 〈 160 K). An increase in temperature over the room temperature decreased the perovskite solar cell performance and reduced its efficiency from 16Z to 9%. The investigation with electronic impedance spectroscopy reveals that at low temperature (T 〈 120 K) the charge transport layer limits the device performance, while at high temperature (T 〉 200 K), the interfacial charge recombination becomes the dominant factor.展开更多
The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vande...The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.展开更多
The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to g...The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to guarantee a thickness that can provide a good silicone adherence to obtain long term stability and keeping a good solar transmittance performance, too. This new adhesive is made up of a mixture of silicone and transparent glass balls. The experimental part consists of the choice of the best size of glass balls with the suitable proportion of the glass balls weight in the mixture. For this purpose, ten samples were manufactured for every category of glass balls and weight ratio. Glass ball sizes between 100 and 1100 μm, and weight ratios between 1 and 10% were analyzed. For each category of glass balls, four proportions were mixed with the silicone. The thicknesses and transmittance of every sample were measured with appropriate instruments. The experimental results illustrate that the mixture containing balls with sizes inferior to 106 μm, is the best mixture which assures adhesive minimum thickness value necessary for an efficient mechanical bond and preserves also a good transmittance of solar irradiance.展开更多
In recent years, the performance of organic thinfilm solar cells has gained rapid progress, of which the power conversion efficiencies (r/p) of 3%-5% are commonly achieved, which were difficult to obtain years ago a...In recent years, the performance of organic thinfilm solar cells has gained rapid progress, of which the power conversion efficiencies (r/p) of 3%-5% are commonly achieved, which were difficult to obtain years ago and are improving steadily now. The r/p of 7.4% was achieved in the year 2010, and r/p of 9.2% was disclosed and confirmed at website of Mitsubishi Chemical in April, 2011. The promising future is that the r/p of 10% is achievable according to simulation results. Apparently, these are attributed to material innovations, new device structures, and also the better understanding of device physics. This article summarizes recent progress in organic thinfilm solar cells related to materials, device structures and working principles. In the device functioning part, after each brief summary of the working principle, the methods for improvements, such as absorption increment, organic/electrode interface engineering, morphological issues, are addressed and summarized accordingly. In addition, for the purpose of increasing exciton diffusion efficiency, the benefit from triplet exciton, which has been proposed in recent years, is highlighted. In the active material parts, the chemical nature of materials and its impact on device performance are discussed. Particularly, emphasis is given toward the insight for better understanding device physics as well as improvements in device performance either by development of new materials or by new device architecture.展开更多
Three new metal-free organic dyes (TX1, TX2 and TX3) based on truxene core structure, with triphenylamine as the electron donor, thiophene as the n spacers, and cyanoacetic acid or rhodanine-3- acetic acid as the el...Three new metal-free organic dyes (TX1, TX2 and TX3) based on truxene core structure, with triphenylamine as the electron donor, thiophene as the n spacers, and cyanoacetic acid or rhodanine-3- acetic acid as the electron acceptor are designed and synthesized. Their UV-vis absorption spectra, electrochemical and photovoltaic properties were investigated. The cyanoacrylic acid is verified to be a better acceptor unit (meanwhile the anchoring group) compared to the rhodanine-3-acetic acid. And also, two anchoring groups in TX2 could provide stronger adsorption ability on the TiO2 surface. In addition, the EIS results indicate a slower charge recombination processes for TX2. As a result, dye TX2 bearing two cyanoacetic acid outperforms the other two dyes, exhibiting the photo-conversion efficiency of 2.64%, with Jsc = 5.09 mAcm^-2, Voc = 729 mV, FF = 71.1.展开更多
Three novel triarylamine dyes(AFL1-AFL3) containing fluorenyl and the biphenyl moieties have been designed and synthesized for application in dye-sensitized solar cells.The light-harvesting capabilities and photovol...Three novel triarylamine dyes(AFL1-AFL3) containing fluorenyl and the biphenyl moieties have been designed and synthesized for application in dye-sensitized solar cells.The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges.The dye with a furan linker exhibited a higher open-circuit voltage(VOC) and monochromatic incident photon-to-current conversion efficiency(IPCE) compared to thiophene and benzene linker.Thus,AFL3 containing a furan linker exhibited the maximum overall conversion efficiency of 5.81%(VOC = 760 mV,JSC = 11.36 mA cm^-2 and ff=0.68) under standard global AM 1.5 G solar condition.展开更多
The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps...The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multiexciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.展开更多
Three structural modifications with incorporation of alkyl,alkoxy and vinyl bond into the skeleton of thiophene bridge in D-π-A featured organic sensitizers are specifically developed for insight into their influence...Three structural modifications with incorporation of alkyl,alkoxy and vinyl bond into the skeleton of thiophene bridge in D-π-A featured organic sensitizers are specifically developed for insight into their influences on photophysical,electrochemical as well as photovoltaic properties in nanocrystalline TiO_2-based dye sensitized solar cells(DSSCs).The insertion of vinyl bond into the conjugation bridge leads to the molecular planar configuration,and the conjugation bridge of 3,4-ethylenedioxythiophene(EDOT)is prone to positively shift its highest occupied molecular orbital(HOMO).The electrochemical impedance spectroscopy(EIS)results indicate that the grafted long alkyl chain onto thiophene is favorable to suppress dye aggregation when adsorbed onto TiO_2film and modification on interface of TiO_2/dye/electrolyte,resulting in a relatively high open-circuit voltage(V_(oc)).Under optimized conditions,dye LS-4 bearing hexylthiophene as the conjugation bridge shows a relatively high overall conversion efficiency of5.45%,with a photocurrent of 11.61 mA cm^(-2),V_(oc)of 744 mV.展开更多
Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanoflui...Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system.展开更多
文摘<span style="font-family:Verdana;">Several studies on PV solar cells are found in</span> <span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">literature which use static models. Those models are mainly one-diode, two-diode or three-diode models. In the dynamic modelling</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;"> a variable parallel capacitance is incorporated. Unlike the previous studies which do not clearly establish a relationship between the capacitance and the voltage, in the present paper, the link between the capacitance and the voltage is investigated and established. In dynamic modelling investigated in this paper, the dynamic resistance is introduced in the modelling of the solar cell. It is introduced in the current-voltage characteristic. The value of the dynamic resistance is evaluated at the maximum po</span><span style="font-family:Verdana;">wer point and its effect on the maximum power is investigated. The study</span> <span style="font-family:Verdana;">shows for the first time, that the dynamic resistance must be introduced in</span> <span style="font-family:Verdana;">the current-voltage characteristic, because it has an influence on the PV cell </span><span style="font-family:Verdana;">output</span></span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">.</span></span></span>
基金Project supported by the Graduate Student Education Teaching Reform Project,China(Grant No.JG201512)the Young Teachers Research Project of Yanshan University,China(Grant No.13LGB028)
文摘According to the good charge transporting property of perovskite, we design and simulate a p–i–n-type all-perovskite solar cell by using one-dimensional device simulator. The perovskite charge transporting layers and the perovskite absorber constitute the all-perovskite cell. By modulating the cell parameters, such as layer thickness values, doping concentrations and energy bands of n-, i-, and p-type perovskite layers, the all-perovskite solar cell obtains a high power conversion efficiency of 25.84%. The band matched cell shows appreciably improved performance with widen absorption spectrum and lowered recombination rate, so weobtain a high J_(sc) of 32.47 m A/cm^2. The small series resistance of the all-perovskite solar cell also benefits the high J_(sc). The simulation provides a novel thought of designing perovskite solar cells with simple producing process, low production cost and high efficient structure to solve the energy problem.
基金supported by the National Natural Science Foundation of China(Nos.61325026,51503209)the Natural Science Foundation of Fujian Province(No.2015H0050)
文摘Three star-shaped truxene-based small molecules(namely TXH,TXM,TXO) were synthesized,characterized and used as hole-transporting materials(HTMs) for perovskite solar cells(Pv SCs). The device based on TXO delivered a respectable power conversion efficiency(PCE) of 7.89% and a high open-circuit voltage(Voc) of 0.97 V,which far exceeded the values of the devices based on other two small molecules. The highest PCE for the device based on TXO is mainly contributed from its lowest series resistance(Rs) value and largest short-circuit current(Jsc) value under the same circumstances. All these results indicate that TXO is a promising HTM candidate for Pv SCs.
基金National Natural Science Foundation of China(No.11174071)the International Cooperation Project of Wuhan City and Hubei Province(Nos.201070934339 and 2010BFA010)
文摘CdSe/CdS semiconductor quantum dots co-sensitized TiO2 nanorod array was fabricated on the transparent conductive fluorine-doped tin oxide (FTO) substrate using the hydrothermal and successive ionic layer adsorption and reaction (SILAR) process. The structural and morphological properties of the samples were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and transmission electron microscopy (TEM). The results indicate that CdSe/CdS QDs are uniformly coated on the surface of the TiO2 nanorods. The shift of light absorption edge was monitored by taking UV-visible absorption spectra. Compared with the absorption spectra of the TiO2 nanorod array, deposition of CdSe/CdS QDs shifts the absorption edge to the higher wavelength. The enhanced light absorption in the visible-light region of CdSe/CdS/TiO2 nanorod array indicates that CdSe/CdS layers can act as co-sensitizers in quantum dots sensitized solar cells (QDSSCs). By optimizing the CdSe layer deposition cycles, a photocurrent of 5.78 mA/cm2, an open circuit photovoltage of 0.469 V and a conversion efficiency of 1.34 % were obtained under an illumination of 100 mw/cm2.
基金supported by 973 Program of China (2014CB643506 and 2013CB922104)the NSFC (21173091 and 61205034)
文摘In recent years perovskite solar cells have attracted an increasing scientific and technological interest in the scientific community. It is important to know that the temperature is one of the factors which have a strong effect on the efficiency of perovskite solar cell. This study communicates a temperature analysis on the pho- tovoltaic parameters of CH3NH3Pbl3-based perovskite solar cell in a broad interval from 80 to 360 K. Strong temperature-dependent photovoltaic effects have been observed in the type of solar cell, which could be mainly attributed to CH3NH3PbI3, showing a ferroelectric-paraelectric phase transition at low temperature (T 〈 160 K). An increase in temperature over the room temperature decreased the perovskite solar cell performance and reduced its efficiency from 16Z to 9%. The investigation with electronic impedance spectroscopy reveals that at low temperature (T 〈 120 K) the charge transport layer limits the device performance, while at high temperature (T 〉 200 K), the interfacial charge recombination becomes the dominant factor.
文摘The outcomes of computational study of electronic, magnetic and optical spectra for A2BX6 (A = Rb;B = Tc, Pb, Pt, Sn, W, Ir, Ta, Sb, Te, Se, Mo, Mn, Ti, Zr and X = Cl, Br) materials have been proceeded utilizing Vanderbilt Ultra Soft Pseudo Potential (US-PP) process. The Rb2PbBr6 and Rb2PbCl6 are found to be a (Г-Г) semiconductors with energy gaps of 0.275 and 1.142 eV, respectively making them promising photovoltaic materials. The metallic behavior of the materials for Rb2BX6 (B = Tc, W, Ir, Ta, Mn, Sb, Mo) has been confirmed showing the attendance of conducting lineaments. The dielectric function is found to be large close to the ultraviolet districts (3.10 - 4.13 eV). The extinction coefficient of the Rb2BX6 has the ability to be used for implements. The band structures and density of states ensure the magnetic semiconductors’ nature of the Rb2Mn (Cl, Br)6 perovskites. The total calculated magnetic moment of Rb2MnCl6 and Rb2MnB6 is 3.00μβ. Advanced spintronic technology requires room-temperature ferromagnetism. The present work confirms that, bromine and chlorine-founded double perovskites are extremely attractive for photovoltaic and optoelectronic devices.
文摘The objective of this present study is to manufacture a new silicone-based adhesive which is used for gluing and bonding the second optical elements (SOE) with Concentrating Photovoltaic solar cell (CPV) in order to guarantee a thickness that can provide a good silicone adherence to obtain long term stability and keeping a good solar transmittance performance, too. This new adhesive is made up of a mixture of silicone and transparent glass balls. The experimental part consists of the choice of the best size of glass balls with the suitable proportion of the glass balls weight in the mixture. For this purpose, ten samples were manufactured for every category of glass balls and weight ratio. Glass ball sizes between 100 and 1100 μm, and weight ratios between 1 and 10% were analyzed. For each category of glass balls, four proportions were mixed with the silicone. The thicknesses and transmittance of every sample were measured with appropriate instruments. The experimental results illustrate that the mixture containing balls with sizes inferior to 106 μm, is the best mixture which assures adhesive minimum thickness value necessary for an efficient mechanical bond and preserves also a good transmittance of solar irradiance.
基金supported by the National Natural Science Foundation of China (20974046, 61077021 & 61076016)New Century Excellent Talents funding from Ministry of Education of China (NCET-08-0697)National Basic Research Program of China (973 Program, 2009CB930600)
文摘In recent years, the performance of organic thinfilm solar cells has gained rapid progress, of which the power conversion efficiencies (r/p) of 3%-5% are commonly achieved, which were difficult to obtain years ago and are improving steadily now. The r/p of 7.4% was achieved in the year 2010, and r/p of 9.2% was disclosed and confirmed at website of Mitsubishi Chemical in April, 2011. The promising future is that the r/p of 10% is achievable according to simulation results. Apparently, these are attributed to material innovations, new device structures, and also the better understanding of device physics. This article summarizes recent progress in organic thinfilm solar cells related to materials, device structures and working principles. In the device functioning part, after each brief summary of the working principle, the methods for improvements, such as absorption increment, organic/electrode interface engineering, morphological issues, are addressed and summarized accordingly. In addition, for the purpose of increasing exciton diffusion efficiency, the benefit from triplet exciton, which has been proposed in recent years, is highlighted. In the active material parts, the chemical nature of materials and its impact on device performance are discussed. Particularly, emphasis is given toward the insight for better understanding device physics as well as improvements in device performance either by development of new materials or by new device architecture.
基金supported by‘‘Fundamental Research Funds for the Central Universities’’(Nos.XDJK2014C145 and XDJK2014C052)the Starting Foundation of Southwest University(Nos.SWU113076 and SWU113078)the financial support from National Natural Science Foundation of China(No.51203046)
文摘Three new metal-free organic dyes (TX1, TX2 and TX3) based on truxene core structure, with triphenylamine as the electron donor, thiophene as the n spacers, and cyanoacetic acid or rhodanine-3- acetic acid as the electron acceptor are designed and synthesized. Their UV-vis absorption spectra, electrochemical and photovoltaic properties were investigated. The cyanoacrylic acid is verified to be a better acceptor unit (meanwhile the anchoring group) compared to the rhodanine-3-acetic acid. And also, two anchoring groups in TX2 could provide stronger adsorption ability on the TiO2 surface. In addition, the EIS results indicate a slower charge recombination processes for TX2. As a result, dye TX2 bearing two cyanoacetic acid outperforms the other two dyes, exhibiting the photo-conversion efficiency of 2.64%, with Jsc = 5.09 mAcm^-2, Voc = 729 mV, FF = 71.1.
基金National Natural Science Foundation of China (No. 21176223)National Natural Science Foundation of China (No. 21406202)Natural Science Foundation of Zhejiang province (No. LY15B020009)
文摘Three novel triarylamine dyes(AFL1-AFL3) containing fluorenyl and the biphenyl moieties have been designed and synthesized for application in dye-sensitized solar cells.The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges.The dye with a furan linker exhibited a higher open-circuit voltage(VOC) and monochromatic incident photon-to-current conversion efficiency(IPCE) compared to thiophene and benzene linker.Thus,AFL3 containing a furan linker exhibited the maximum overall conversion efficiency of 5.81%(VOC = 760 mV,JSC = 11.36 mA cm^-2 and ff=0.68) under standard global AM 1.5 G solar condition.
文摘The development of photovoltaic devices, solar cells, plays a key role in renewable energy sources. Semiconductor colloidal quantum dots (CQDs), including lead chacolgenide CQDs that have tunable electronic bandgaps from infrared to visible, serve as good candidates to harvest the broad spectrum of sunlight. CQDs can be processed from solution, allowing them to be deposited in a roll-to-roll printing process compatible with low-cost fabrication of large area solar panels. Enhanced multiexciton generation process in CQD, compared with bulk semiconductors, enables the potential of exceeding Shockley-Queisser limit in CQD photovoltaics. For these advantages, CQDs photovoltaics attract great attention in academics, and extensive research works accelerate the development of CQD based solar cells. The record efficiency of CQD solar cells increased from 5.1% in 2011 to 9.9% in 2015. The improvement relies on optimized material processing, device architecture and various efforts to improve carrier collection efficiency. In this review, we have summarized the progress of CQD photovoltaics in year 2012 and after. Here we focused on the theoretical and experimental works that improve the understanding of the device physics in CQD solar cells, which may guide the development of CQD photovoltaics within the research community.
基金supported by the Science Fund for Creative Research Groups(21421004)Distinguished Young Scholars, the National Natural Science Foundation of China(21325625)+4 种基金Oriental Scholarship,Programme of Introducing Talents of Discipline to UniversitiesScience and Technology Commission of Shanghai Municipality (14YF1410500 and 15XD1501400)Shanghai Young Teacher Supporting Foundation(ZZEGD14011)School Funding of Shanghai Second Polytechnic University(EGD14XQD08)"Shu Guang" project(13SG55)
文摘Three structural modifications with incorporation of alkyl,alkoxy and vinyl bond into the skeleton of thiophene bridge in D-π-A featured organic sensitizers are specifically developed for insight into their influences on photophysical,electrochemical as well as photovoltaic properties in nanocrystalline TiO_2-based dye sensitized solar cells(DSSCs).The insertion of vinyl bond into the conjugation bridge leads to the molecular planar configuration,and the conjugation bridge of 3,4-ethylenedioxythiophene(EDOT)is prone to positively shift its highest occupied molecular orbital(HOMO).The electrochemical impedance spectroscopy(EIS)results indicate that the grafted long alkyl chain onto thiophene is favorable to suppress dye aggregation when adsorbed onto TiO_2film and modification on interface of TiO_2/dye/electrolyte,resulting in a relatively high open-circuit voltage(V_(oc)).Under optimized conditions,dye LS-4 bearing hexylthiophene as the conjugation bridge shows a relatively high overall conversion efficiency of5.45%,with a photocurrent of 11.61 mA cm^(-2),V_(oc)of 744 mV.
基金supported by the National Natural Science Foundation of China(NO.51766012)Inner Mongolia Financial Innovation Funding Project in 2017+1 种基金Inner Mongolia Natural Science Foundation of China(NO.2019MS05025)the Inner Mongolia Science and Technology Major Project of China(NO.201905)。
文摘Carbon nanotube nanofluids have wide application prospects due to their unique structure and excellent properties.In this study,the thermal conductivity properties of carbon nanotube nanofluids and SiO2/water nanofluids were compared and analyzed experimentally using different preparation methods.The physical properties of nanofluids were tested using a Malvern Zetasizer Nano Instrument and a Hot Disk Thermal Constant Analyzer.Combined with field synergy theory analysis of the heat transfer performance of nanofluids,results show that the thermal conductivity of carbon nanotube nanofluids is higher than that of SiO2/water nanofluids,and the thermal conductivity of nanofluid rises with the increase of mass fraction and temperature.Moreover,the synergistic performance of carbon nanotube nanofluids is also superior to that of SiO2/water nanofluids.When the mass fraction of the carbon nanotube nanofluids is 10%and the SiO2/water nanofluids is 8%,their field synergy numbers and heat transfer enhancement factors both reach maximum.From the perspective of the preparation method,the thermal conductivity of nanofluids dispersed by high shear microfluidizer is higher than that by ultrasonic dispersion.This result provides some reference for the selection and use of working substance in a microchannel cooling concentrated photovoltaic and thermal(CPV/T)system.