A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At ...A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters.展开更多
文摘A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters.