[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar ener...[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.展开更多
To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based o...To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.展开更多
Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system b...Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.展开更多
A distributed energy management in a photovoltaic charging station(PV-CS) is proposed on the basis of different behavioural responses of electric vehicle(EV) drivers. On the basis of the provider or the consumer of th...A distributed energy management in a photovoltaic charging station(PV-CS) is proposed on the basis of different behavioural responses of electric vehicle(EV) drivers. On the basis of the provider or the consumer of the power, charging station and EVs have been modeled as independent players with different preferences. Because of the selfish behaviour of the individuals and their hierarchies, the power distribution problem is modeled as a noncooperative Stackelberg game. Moreover, Karush-Kuhn-Tucker(KKT) conditions and the most socially stable equilibrium are adopted to solve the problem in hand. The consensus network, a learning-based algorithm, is utilized to let the EVs communicate and update their own charging power in a distributed fashion. Simulation analysis is supported to show the static and dynamic responses as well as the effectiveness and workability of the proposed charging power management. For the sake of showing the responses of EV drivers, different behavioural responses of EVs’ drivers to the discount on the charging price offered by the station are introduced. The simulation results show the effectiveness of the proposed energy management.展开更多
基金Supported by Shandong Meteorological Bureau Key Project (2010sdqxj105)~~
文摘[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province.
文摘To improve the operation efficiency of the photovoltaic power station complementary power generation system,an optimal allocation model of the photovoltaic power station complementary power generation capacity based on PSO-BP is proposed.Particle Swarm Optimization and BP neural network are used to establish the forecasting model,the Markov chain model is used to correct the forecasting error of the model,and the weighted fitting method is used to forecast the annual load curve,to complete the optimal allocation of complementary generating capacity of photovoltaic power stations.The experimental results show that thismethod reduces the average loss of photovoltaic output prediction,improves the prediction accuracy and recall rate of photovoltaic output prediction,and ensures the effective operation of the power system.
基金Major Projects of Gansu Province(No.17ZD2GA010)Power Company Technology Projects of State Grid Corporation in Gansu Province(No.52272716000K)
文摘Due to the phenomenon of abandoning wind power and photo voltage(PV)power in the“Three Northern Areas”in China,this paper presents an optimal strategy for coordinating and dispatching“source-load”in power system based on multiple time scales.On the basis of the analysis of the uncertainty of wind power and PV power as well as the characteristics of load side resource dispatching,the optimal model of coordinating and dispatching“source-load”in power system based on multiple time scales is established.It can simultaneously and effectively dispatch conventional generators,wind plant,PV power station,pumped-storage power station and load side resources by optimally using three time scales:day-ahead,intra-day and real-time.According to the latest predicted information of wind power,PV power and load,the original generation schedule can be rolled and amended by using the corresponding time scale.The effectiveness of the model can be verified by a real system.The simulation results show that the proposed model can make full use of“source-load”resources to improve the ability to consume wind power and PV power of the grid-connected system.
基金the Technology Projects of China State Grid Corporation(No.SGJS0000YXJS1800187)
文摘A distributed energy management in a photovoltaic charging station(PV-CS) is proposed on the basis of different behavioural responses of electric vehicle(EV) drivers. On the basis of the provider or the consumer of the power, charging station and EVs have been modeled as independent players with different preferences. Because of the selfish behaviour of the individuals and their hierarchies, the power distribution problem is modeled as a noncooperative Stackelberg game. Moreover, Karush-Kuhn-Tucker(KKT) conditions and the most socially stable equilibrium are adopted to solve the problem in hand. The consensus network, a learning-based algorithm, is utilized to let the EVs communicate and update their own charging power in a distributed fashion. Simulation analysis is supported to show the static and dynamic responses as well as the effectiveness and workability of the proposed charging power management. For the sake of showing the responses of EV drivers, different behavioural responses of EVs’ drivers to the discount on the charging price offered by the station are introduced. The simulation results show the effectiveness of the proposed energy management.