In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid ...In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models.展开更多
Using nonequilibrium molecular dynamics simulations, a comprehensive study of the asymmetric heat conduction in the composite system consisting of the Frenkel-Kontorova (FK) model and Fermi-Pasta-Ulam (FPU) model ...Using nonequilibrium molecular dynamics simulations, a comprehensive study of the asymmetric heat conduction in the composite system consisting of the Frenkel-Kontorova (FK) model and Fermi-Pasta-Ulam (FPU) model is conducted. The calculated results show that in a larger system, the rectifying direction can be reversed only by adjusting the thermal bias. Moreover, the rectification reversal depends critically on the system size and the properties of the interface. The mechanisms of the two types of asymmetric heat conduction induced by nonlinearity are discussed. Considering the novel asymmetric heat conduction in the system, it may possess possible applications to manage the thermal rectification in situ directionally without re-building the structure.展开更多
The objective of this work is to analyze and evaluate the impact of cooling systems on photovoltaic modules (for electricity generation), applied at a pilot Testing Facility. The results obtained during this step are ...The objective of this work is to analyze and evaluate the impact of cooling systems on photovoltaic modules (for electricity generation), applied at a pilot Testing Facility. The results obtained during this step are used as input in order to determine the best model to be applied at a real-scale Photovoltaic Power Plant (PVPP). This methodology is based on the monitoring and supervision of the operating temperature of commercial photovoltaic modules (PV), both with and without cooling systems, as well as on the study of the water supply design of the cooling system applied on a micro photovoltaic power plant which is connected to the commercial network. Through the analysis of the data, we observed that photovoltaic modules with cooling systems always operate at lower temperatures than the ones without cooling systems. During the testing period, the operating temperatures of the photovoltaic modules without cooling systems were above 60oC (with a maximum temperature equaling 68.06oC), whereas the maximum temperatures registered on the sensors of the model “A” were 43.55oC and 44.75oC, and the ones registered on the sensors of the model “B” were 46.76 and 48.33oC. Therefore, we conclude that the photovoltaic module with the cooling system model “A” is the most suitable for large-scale application, since it was the only model to present temperatures lower than the nominal operating condition temperature (NOCT) of the cell (47oC ± 2oC).展开更多
A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At ...A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters.展开更多
In conventional photovoltaic(PV) systems, a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%. As the dissipated heat can be recovered for various appli...In conventional photovoltaic(PV) systems, a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%. As the dissipated heat can be recovered for various applications, the wasted heat recovery concentrator PV/thermal(WHR CPVT) hybrid systems have been developed. They can provide both electricity and usable heat by combining thermal systems with concentrator PV(CPV) module, which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development of WHR CPVT systems. WHR CPVT systems with innovative design configurations, different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner. We aim to provide a global point of view on the research trends, market potential, technical obstacles, and the future work which is required in the development of WHR CPVT technology. Possibly, it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.展开更多
Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to indus...Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to industrial scales.Owing to their enhanced thermal and optical properties,nanofluids have proven to be good candidates for designing PV/T systems with superior performances.As smart nanofluids,magnetic nanofluids(MNFs)can further enhance the performances of PV/T systems under external magnetic fields.This paper reviews recent developments in enhancing the electrical and thermal performances of PV/T systems using magnetic nanofluids.Various parameters affecting the performances are highlighted,and some areas for further investigations are discussed.The reviewed literature shows that PV/T systems with MNFs are promising.However,their performances need further investigation before they can be used in applications.展开更多
Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelo...Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate.展开更多
The dynamic performance of composite flexible multi-body system under the simultaneous action of thermal fields and driving constraint is analyzed. Based on strain-displacement relation of the Mindlin plate theory whi...The dynamic performance of composite flexible multi-body system under the simultaneous action of thermal fields and driving constraint is analyzed. Based on strain-displacement relation of the Mindlin plate theory which includes transverse shear deformation, and considering thermal effect, variation equations of laminated plate are derived by the principle of virtual work. The finite element method is used for discretization. According to kinematics constraint relation, dynamic equations for spatial slider-crank system are established. Simulation results show that spatial deformation (torsion deformation) appears in the multi-layered composite slider-crank mechanism which is simulated with planar motions. Furthermore, the influence of coupling between thermal expansion and flexible deformations of non-symmetrical composite plates on the large overall motion under the uniform temperature field is investigated. Finally, significant change in constraint force due to the spatial deformation is shown.展开更多
The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obt...The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.展开更多
文摘In the present study, the adaptive neuro-fuzzy inference system (ANFIS) is developed for the prediction of effective thermal conductivity (ETC) of different fillers filled in polymer matrixes. The ANFIS uses a hybrid learning algorithm. The ANFIS is a class of adaptive networks that is functionally equivalent to fuzzy inference systems (FIS). The ANFIS is based on neuro-fuzzy model, trained with data collected from various sources of literature. ETC is predicted using ANFIS with volume fraction and thermal conductivities of fillers and matrixes as input parameters, respectively. The predicted results by ANFIS are in good agreements with experimental values. The predicted results also show the supremacy of ANFIS in comparison with other earlier developed models.
基金supported by the Natural Science Foundation of Hunan Province,China(Grant No.12JJ3009)the Changsha Science and Technology Plan Projects,Chinathe Science and Technology Plan Projects of Hunan Province,China(Grant No.2013SK3148)
文摘Using nonequilibrium molecular dynamics simulations, a comprehensive study of the asymmetric heat conduction in the composite system consisting of the Frenkel-Kontorova (FK) model and Fermi-Pasta-Ulam (FPU) model is conducted. The calculated results show that in a larger system, the rectifying direction can be reversed only by adjusting the thermal bias. Moreover, the rectification reversal depends critically on the system size and the properties of the interface. The mechanisms of the two types of asymmetric heat conduction induced by nonlinearity are discussed. Considering the novel asymmetric heat conduction in the system, it may possess possible applications to manage the thermal rectification in situ directionally without re-building the structure.
文摘The objective of this work is to analyze and evaluate the impact of cooling systems on photovoltaic modules (for electricity generation), applied at a pilot Testing Facility. The results obtained during this step are used as input in order to determine the best model to be applied at a real-scale Photovoltaic Power Plant (PVPP). This methodology is based on the monitoring and supervision of the operating temperature of commercial photovoltaic modules (PV), both with and without cooling systems, as well as on the study of the water supply design of the cooling system applied on a micro photovoltaic power plant which is connected to the commercial network. Through the analysis of the data, we observed that photovoltaic modules with cooling systems always operate at lower temperatures than the ones without cooling systems. During the testing period, the operating temperatures of the photovoltaic modules without cooling systems were above 60oC (with a maximum temperature equaling 68.06oC), whereas the maximum temperatures registered on the sensors of the model “A” were 43.55oC and 44.75oC, and the ones registered on the sensors of the model “B” were 46.76 and 48.33oC. Therefore, we conclude that the photovoltaic module with the cooling system model “A” is the most suitable for large-scale application, since it was the only model to present temperatures lower than the nominal operating condition temperature (NOCT) of the cell (47oC ± 2oC).
文摘A transformer is an essential but expensive power delivery equipment for a distribution utility.In many distribution utilities worldwide,a sizable percentage of transformers are near the end of their designed life.At the same time,distribution utilities are adopting smart inverter-based distributed solar photovoltaic(SPV)systems to maximize renewable generation.The central objective of this paper is to propose a methodology to quantify the effect of smart inverter-based distributed SPV systems on the aging of distribution transformers.The proposed method is first tested on a modified IEEE-123 node distribution feeder.After that,the procedure is applied to a practical distribution system,i.e.,the Indian Institute of Technology(IIT)Roorkee campus,India.The transformer aging models,alongside advanced control functionalities of grid-tied smart inverter-based SPV systems,are implemented in MATLAB.The open-source simulation tool(OpenDSS)is used to model distribution networks.To analyze effectiveness of various inverter functionalities,time-series simulations are performed using exponential load models,considering daily load curves from multiple seasons,load types,current harmonics,etc.Findings show replacing a traditional inverter with a smart inverter-based SPV system can enable local reactive power generation and may extend the life of a distribution transformer.Simulation results demonstrate,simply by incorporating smart inverter-based SPV systems,transformer aging is reduced by 15%to 22%in comparison to SPV systems operating with traditional inverters.
基金supported by the National Natural Science Foundation of China (51406051 and 51522602)the Beijing Municipal Science and Technology Project (Z161100002616039)the Fundamental Research Funds for the Central Universities (2016MS20)
文摘In conventional photovoltaic(PV) systems, a large portion of solar energy is dissipated as waste heat since the generating efficiency is usually less than 30%. As the dissipated heat can be recovered for various applications, the wasted heat recovery concentrator PV/thermal(WHR CPVT) hybrid systems have been developed. They can provide both electricity and usable heat by combining thermal systems with concentrator PV(CPV) module, which dramatically improves the overall conversion efficiency of solar energy.This paper systematically and comprehensively reviews the research and development of WHR CPVT systems. WHR CPVT systems with innovative design configurations, different theoretical evaluation models and experimental test processes for several implementations are presented in an integrated manner. We aim to provide a global point of view on the research trends, market potential, technical obstacles, and the future work which is required in the development of WHR CPVT technology. Possibly, it will offer a generic guide to the investigators who are interested in the study of WHR CPVT systems.
基金This work was supported by the World Bank through the East Africa Higher Education Centers of Excellence(Project ID:PI 51847)and the African Center of Excellence in Energy for Sustainable Development(ACE-ESD).
文摘Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to industrial scales.Owing to their enhanced thermal and optical properties,nanofluids have proven to be good candidates for designing PV/T systems with superior performances.As smart nanofluids,magnetic nanofluids(MNFs)can further enhance the performances of PV/T systems under external magnetic fields.This paper reviews recent developments in enhancing the electrical and thermal performances of PV/T systems using magnetic nanofluids.Various parameters affecting the performances are highlighted,and some areas for further investigations are discussed.The reviewed literature shows that PV/T systems with MNFs are promising.However,their performances need further investigation before they can be used in applications.
基金This research was funded by National Key R&D Program of China(2017YFC0702800),which is gratefully acknowledged.
文摘Internal thermal insulation composite system(ITICS)can be an important measure for the energy-saving retrofitting of buildings.However,ITICS may cause harmful effects on the hygrothermal performance of building envelopes.This work investigated the influence of the materials’hygric properties on the hygrothermal perfor-mance of a typical ITICS in different climate conditions in China.Two base wall materials,the traditional concrete and a new type aerated concrete,were tested and compared for their hygric properties firstly.The influence of the hygroscopicity of exterior plasters,the permeability of insulation materials and the climate conditions were then analyzed with WUFI simulations.The hygrothermal performance was evaluated with consideration of the total water content(TWC)of the walls and the moisture flux strength,the relative humidity(RH)and the mould growth risk at the interface between the base wall and the insulation layer(B-I interface).The numerical analysis implies that the TWC of internal insulated walls depends mainly on the hygroscopicity of exterior plaster and the wind-driven rain intensity.The upper limits for the water absorption coefficient of exterior plasters used in Bei-jing,Shanghai and Fuzhou are 1e-9,1e-10,1e-10 m^(2)/s respectively.When such limits are guaranteed,a vapour tight system created by using insulation materials with a large vapour resistance factor or adding a vapour barrier can improve the hygrothermal performance of ITICS,especially for concrete walls in cold climate.
基金the National Natural Science Foundation of China(Nos.10872126 and 10772113)
文摘The dynamic performance of composite flexible multi-body system under the simultaneous action of thermal fields and driving constraint is analyzed. Based on strain-displacement relation of the Mindlin plate theory which includes transverse shear deformation, and considering thermal effect, variation equations of laminated plate are derived by the principle of virtual work. The finite element method is used for discretization. According to kinematics constraint relation, dynamic equations for spatial slider-crank system are established. Simulation results show that spatial deformation (torsion deformation) appears in the multi-layered composite slider-crank mechanism which is simulated with planar motions. Furthermore, the influence of coupling between thermal expansion and flexible deformations of non-symmetrical composite plates on the large overall motion under the uniform temperature field is investigated. Finally, significant change in constraint force due to the spatial deformation is shown.
文摘The overall problem with PV (photovoltaic) systems is the high cost for the photovoltaic modules. This makes it interesting to concentrate irradiation on the PV-module, thereby reducing the PV area necessary for obtaining the same amount of output power. The tracking capability of two-axes tracking unit driving a new concentrating paraboloid for electric and heat production have been evaluated. The reflecting optics consisting of flat mirrors provides uniform illumination on the absorber which is a good indication for optimised electrical production due to series connection of solar cells. The calculated optical efficiency of the system indicates that about 80% of the incident beam radiation is transferred to the absorber. Simulations of generated electrical and thermal energy from the evaluated photovoltaic thermal (PV/T) collector show the potential of obtaining high total energy efficiency.