The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs ...The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.展开更多
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ...The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.展开更多
In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complica...Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement.展开更多
The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes fr...The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.展开更多
Two organic dyes XSS1 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar ceils (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photoph...Two organic dyes XSS1 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar ceils (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photophysical, electro-chemical characteristics and cell perfor- mance are investigated. XS51 with four hexyloxyl groups on triarylamine performs better steric hindrance and an improvement of photovoltage. X852 provides higher short-circuit photocurrent density due to the strong electron-donating capability of indoline unit. The results from the redox electrolyte on cell performances indicate that the synthesized dyes are more suitable for tris(1,10-phenanthroline)cobalt(II/III) redox couple than I-/I3- redox couple in assembling DSCs. Application of X852 in the cobalt electrolyte yields a DSC with an overall power conversion efficiency of 6.58% under AM 1.5 (100 mW/cm2) irradiation.展开更多
Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 ...Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.展开更多
With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the pr...With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.展开更多
Progresses in photovoltaic technologies over the past years are evident from the lower costs, the rising efficiency, to the great improvements in system reliability and yield. Cumulative installed power yearly growths...Progresses in photovoltaic technologies over the past years are evident from the lower costs, the rising efficiency, to the great improvements in system reliability and yield. Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016, the global cumulative photovoltaic power installed has reached 320 GWp. The level 0.5 TWp could be reached before 2020. The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies. Trends following from the present technology levels are discussed, also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced. Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies. The wafer based crystalline silicon(csilicon) technologies have the role of workhorse of present photovoltaic power generation, representing more than 90% of total module production. Further technology improvements have to be implemented without significantly increasing costs per unit, despite the necessarily more complex manufacturing processes involved. The tandem of c-silicon and thin film cells is very promising. Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time.展开更多
We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.T...We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.The device is called a PVOLED.It has a glass / ITO / CuPc / m-MTDATA ∶ V 2 O 5 / NPB / CBP ∶ FIrpic ∶ DCJTB / BPhen / LiF / Al / P3HT∶ PCBM / V 2 O 5 / Al structure.The power recycling efficiency of 10.133% is achieved under the WOLED of PVOLED operated at 9 V and at a brightness of 2 110 cd / m 2,when the conversion efficiency of OPV is 2.3%.We have found that the power recycling efficiency is decreased under high brightness and high applied voltage due to an increase input power of WOLED.High efficiency(18.3 cd / A) and high contrast ratio(9.3) were obtained at the device operated at 2 500 cd / m 2 under an ambient illumination of 24 000 lx.Reasonable white light emission with Commission Internationale De L'Eclairage(CIE) color coordinates of(0.32,0.44) at 20 mA / cm 2 and slight color shift occurred in spite of a high current density of 50 mA / cm 2.The proposed PVOLED is highly promising for use in outdoors display applications.展开更多
Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific powe...Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.展开更多
A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar...A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.展开更多
In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as ...In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.展开更多
Based on the transport equation of the semiconductor device model for 0.524 e V Ge Sn alloy and the experimental parameters of the material,the thermal-electricity conversion performance governed by a Ge Sn diode has ...Based on the transport equation of the semiconductor device model for 0.524 e V Ge Sn alloy and the experimental parameters of the material,the thermal-electricity conversion performance governed by a Ge Sn diode has been systematically studied in its normal and inverted structures.For the normal p^(+)/n(n^(+)/p)structure,it is demonstrated here that an optimal base doping N_(d(a))=3(7)×10^(18)cm^(-3) is observed,and the superior p^(+)/n structure can achieve a higher performance.To reduce material consumption,an economical active layer can comprise a 100 nm-300 nm emitter and a 3μm-6μm base to attain comparable performance to that for the optimal configuration.Our results offer many useful guidelines for the fabrication of economical Ge Sn thermophotovoltaic devices.展开更多
The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable ...The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.展开更多
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog...Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.展开更多
Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for p...Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for photovoltaic solar cells. Argon, acetylene and trimethylboron were used as a carrier, source and dopant gases. Analytical methods such as X-ray photoelectron spectroscopy (XPS), Hall Effect measurement, JASCO V-570 UV/VIS/NIR spectroscopy, Raman spectroscopy, Transmission electron microscopy (TEM) and Solar simulator were employed to investigate chemical, optical, structural and electrical properties of the a-C films. Two types of solar cells of configuration p-C/n-Si and p-C/i-C/n-Si have been fabricated and their current-voltage characteristics under dark and illumination (AM 1.5, 100 mW/cm2) have been studied. The two solar cells showed rectifying curves under the dark condition confirming the heterojunction carbon based solar cell between p-C and n-Si. When illuminated by the solar simulator light the devices showed photovoltaic behavior. The heterojunction device (p-C/i-C/n-Si) having inserted intrinsic carbon film between p-C and n-Si exhibited significant enhancement of the conversation efficiency (0.167% to 2.349%) over the device (p-C/n-Si).展开更多
Efficient heterojunction organic photovoltaic (OPV) cells are fabricated based on copper tetra-methyl phthalocyanine (CuMePc) as donor and fullerene (C60) as acceptor. The power conversion efficiency of CuMePc/C...Efficient heterojunction organic photovoltaic (OPV) cells are fabricated based on copper tetra-methyl phthalocyanine (CuMePc) as donor and fullerene (C60) as acceptor. The power conversion efficiency of CuMePc/C60 OPV cell (2.52%) is increased by 88% compared with that of the non-peripheral substituted copper phthalocyanine (CuPc)/C60 OPV cell (1.34%). The introduction of methyl substituent leads to stronger π–π interaction of CuMePc (~ 3.5 ?) than that of CuPc (~ 3.8 ?). The efficiency improvement is attributed to the enhanced carrier mobility of CuMePc thin film (1.1×10-3 cm2/V·s) and better film morphology by introducing methyl groups into the periphery of CuPc molecule.展开更多
Langkawi SkyCab has the highest energy demand in Langkawi Island and the demand keeps increasing year by year.This study proposed alternatives energy of a hybrid photovoltaic(PV)and fuel cell system for the SkyCab’s ...Langkawi SkyCab has the highest energy demand in Langkawi Island and the demand keeps increasing year by year.This study proposed alternatives energy of a hybrid photovoltaic(PV)and fuel cell system for the SkyCab’s operation.The best sizing and configurations were chosen based on Homer simulation software.A comparative study was done between a conventional system and other hybrid combinations.The results revealed that the proposed system had reduced the cost as well as CO2 emission almost by 39%and 79%,respectively.The hybrid PV and fuel cell system is aligned with the Malaysian government’s goals of reducing carbon emissions 40%by the year 2030.展开更多
基金the financial support provided by Universiti Malaysia Pahang Al Sultan Abdullah(www.umpsa.edu.my,accessed 10 April 2024)through the Doctoral Research Scheme(DRS)toMr.Rittick Maity and the Postgraduate Research Scheme(PGRS220390).
文摘The United Nations’Sustainable Development Goals(SDGs)highlight the importance of affordable and clean energy sources.Solar energy is a perfect example,being both renewable and abundant.Its popularity shows no signs of slowing down,with solar photovoltaic(PV)panels being the primary technology for converting sunlight into electricity.Advancements are continuously being made to ensure cost-effectiveness,high-performing cells,extended lifespans,and minimal maintenance requirements.This study focuses on identifying suitable locations for implementing solar PVsystems at theUniversityMalaysia PahangAl SultanAbdullah(UMPSA),Pekan campus including buildings,water bodies,and forest areas.A combined technical and economic analysis is conducted using Helioscope for simulations and the Photovoltaic Geographic Information System(PVGIS)for economic considerations.Helioscope simulation examine case studies for PV installations in forested areas,lakes,and buildings.This approach provides comprehensive estimations of solar photovoltaic potential,annual cost savings,electricity costs,and greenhouse gas emission reductions.Based on land coverage percentages,Floatovoltaics have a large solar PV capacity of 32.3 Megawatts(MW);forest-based photovoltaics(Forestvoltaics)achieve maximum yearly savings of RM 37,268,550;and Building Applied Photovoltaics(BAPV)have the lowest CO2 emissions and net carbon dioxide reduction compared to other plant sizes.It also clarifies the purpose of using both software tools to achieve a comprehensive understanding of both technical and economic aspects.
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
文摘The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV.
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
基金supported by the National Natural Science Foundation of China under Grant 62266034the Ningxia Natural Science Foundation Key Program underGrant2023AAC02011.
文摘Defect detection technology is crucial for the efficient operation and maintenance of photovoltaic systems.However,the diversity of defect types,scale inconsistencies,and background interference significantly complicate the detection task.Therefore,this paper employs the YOLOX model as the backbone network structure and optimizes various modules to address these issues.First,we adopt a transfer learning strategy to accelerate model convergence and avoid insufficient accuracy due to the limited number of defect samples.Second,we introduce the SENet module into the feature extraction process to enhance the contrast between defects and their background.Then,we incorporate the ASFF strategy at the end of the PAFPN network to adaptively learn and emphasize both high-and low-level semantic features of defects.Furthermore,model accuracy is enhanced by refining the loss functions for positioning,classification,and confidence.Finally,the proposed method achieved excellent results on the Photovoltaic Electroluminescence Anomaly Detection dataset(PVEL-AD),with a mAP of 96.7%and a detection speed of 71.47FPS.Specifically,the detection of small target defects showed significant improvement.
基金ACKNOWLEDGMENTS This work was supported by the National Natural Science Foundation of China (No.60736005 and No.60425101-1), the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (No.60721001), the Provincial Program (No.9140A02060609DZ0208), the Program for New Century Excellent Talents in University (No.NCET- 06-0812), the Project Sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (No.GGRYJJ08P 05), and the Young Excellence Project of Sichuan (No.09ZQ026-074).
文摘The role of bathophenanthroline (Bphen) as a buffer layer inserted between fullerene (C60) and Ag cathode in organic photovoltaic (OPV) cell was discussed. By introducing Bphen as a buffer layer with thicknes from 0 to 2.5 nm, the power conversion efficiency of the OPV cell based on copper phthalocyanine (CuPc) and C60 was increased from 0.87% to 2.25% under AM 1.5 solar illumination at an intensity of 100 mW/cm^2, which was higher than that of bathocuproine used as a buffer layer. The photocurrent-voltage characteristics showed that Bphen effectively improves electron transport through C60 layer into Ag electrode and leads to balance charge carrier transport capability. The influence of Bphen thickness on OPV cells was also investigated. Furthermore, the absorption spectrum shows that an additional Bphen layer enhances the light harvest capability of CuPc/C60.
文摘Two organic dyes XSS1 and XS52 derivated from triarylamine and indoline are synthesized for dye-sensitized solar ceils (DSCs) employing cobalt and iodine redox shuttles. The effects of dye structure upon the photophysical, electro-chemical characteristics and cell perfor- mance are investigated. XS51 with four hexyloxyl groups on triarylamine performs better steric hindrance and an improvement of photovoltage. X852 provides higher short-circuit photocurrent density due to the strong electron-donating capability of indoline unit. The results from the redox electrolyte on cell performances indicate that the synthesized dyes are more suitable for tris(1,10-phenanthroline)cobalt(II/III) redox couple than I-/I3- redox couple in assembling DSCs. Application of X852 in the cobalt electrolyte yields a DSC with an overall power conversion efficiency of 6.58% under AM 1.5 (100 mW/cm2) irradiation.
基金supported by National Natural Science Foundation of China(No.5073000830772434)+2 种基金National Basic Research Program of China(No.2006CB3004006)Shanghai Science and Technology Research Foundation(No:09JC1400740001052nm05500)
文摘Photovoltaic conversion was enhanced by directly assemble of a network of single-walled carbon nanotubes(SWNTs) onto the surface of n-p junction silicon solar cells. When the density of SWNTs increased from 50 to 400 tubes μm^(-2), an enhancement of 3.92% in energy conversion efficiency was typically obtained. The effect of the SWNTs network is proposed for trapping incident photons and assisting electronic transportation at the interface of silicon solar cells.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2022ZYGXZR099)Pazhou Lab(No.PZL2022KF0010).
文摘With the rapid development of emerging photovoltaics technology in recent years,the application of building-integrated photovoltaics(BIPVs)has attracted the research interest of photovoltaic communities.To meet the practical application requirements of BIPVs,in addition to the evaluation indicator of power conversion efficiency(PCE),other key performance indicators such as heat-insulating ability,average visible light transmittance(AVT),color properties,and integrability are equally important.The traditional Si-based photovoltaic technology is typically limited by its opaque properties for application scenarios where transparency is required.The emerging PV technologies,such as organic and perovskite photovoltaics are promising candidates for BIPV applications,owing to their advantages such as high PCE,high AVT,and tunable properties.At present,the PCE of semitransparent perovskite solar cells(ST-PSCs)has attained 14%with AVT of 22–25%;for semitransparent organic solar cells(ST-OSCs),the PCE reached 13%with AVT of almost 40%.In this review article,we summarize recent advances in material selection,optical engineering,and device architecture design for high-performance semitransparent emerging PV devices,and discuss the application of optical modeling,as well as the challenges of commercializing these semitransparent solar cells for building-integrated applications.
文摘Progresses in photovoltaic technologies over the past years are evident from the lower costs, the rising efficiency, to the great improvements in system reliability and yield. Cumulative installed power yearly growths were on an average more than 40% in the period from 2007 to 2016 and in 2016, the global cumulative photovoltaic power installed has reached 320 GWp. The level 0.5 TWp could be reached before 2020. The production processes in the solar industry still have great potential for optimization both wafer based and thin film technologies. Trends following from the present technology levels are discussed, also taking into account other parts of photovoltaic systems that influence the cost of electrical energy produced. Present developments in the three generations of photovoltaic modules are discussed along with the criteria for the selection of appropriate photovoltaic module manufacturing technologies. The wafer based crystalline silicon(csilicon) technologies have the role of workhorse of present photovoltaic power generation, representing more than 90% of total module production. Further technology improvements have to be implemented without significantly increasing costs per unit, despite the necessarily more complex manufacturing processes involved. The tandem of c-silicon and thin film cells is very promising. Durability may be a limiting factor of this technology due to the dependence of the produced electricity cost on the module service time.
基金Project supported by NSC(98-2221-E-214-003-MY3 and ISU99-01-06)
文摘We demonstrate that power recycling is feasible by using a semi-transparent stripped Al electrode as interconnecting layer to merge a white organic light-emitting devices(WOLED) and an organic photovoltaic(OPV) cell.The device is called a PVOLED.It has a glass / ITO / CuPc / m-MTDATA ∶ V 2 O 5 / NPB / CBP ∶ FIrpic ∶ DCJTB / BPhen / LiF / Al / P3HT∶ PCBM / V 2 O 5 / Al structure.The power recycling efficiency of 10.133% is achieved under the WOLED of PVOLED operated at 9 V and at a brightness of 2 110 cd / m 2,when the conversion efficiency of OPV is 2.3%.We have found that the power recycling efficiency is decreased under high brightness and high applied voltage due to an increase input power of WOLED.High efficiency(18.3 cd / A) and high contrast ratio(9.3) were obtained at the device operated at 2 500 cd / m 2 under an ambient illumination of 24 000 lx.Reasonable white light emission with Commission Internationale De L'Eclairage(CIE) color coordinates of(0.32,0.44) at 20 mA / cm 2 and slight color shift occurred in spite of a high current density of 50 mA / cm 2.The proposed PVOLED is highly promising for use in outdoors display applications.
基金supported by the National Natural Science Foundation of China(52322210,52172144,22375069,21825103,and U21A2069)National Key R&D Program of China(2021YFA1200501)+1 种基金Shenzhen Science and Technology Program(JCYJ20220818102215033,JCYJ20200109105422876)the Innovation Project of Optics Valley Laboratory(OVL2023PY007).
文摘Two-dimensional(2D)materials have attracted tremendous interest in view of the outstanding optoelectronic properties,showing new possibilities for future photovoltaic devices toward high performance,high specific power and flexibility.In recent years,substantial works have focused on 2D photovoltaic devices,and great progress has been achieved.Here,we present the review of recent advances in 2D photovoltaic devices,focusing on 2D-material-based Schottky junctions,homojunctions,2D−2D heterojunctions,2D−3D heterojunctions,and bulk photovoltaic effect devices.Furthermore,advanced strategies for improving the photovoltaic performances are demonstrated in detail.Finally,conclusions and outlooks are delivered,providing a guideline for the further development of 2D photovoltaic devices.
文摘A building integrated photovoltaic (PV) and fuel cell (FC) system is proposed for assessment of the energy self-sufficiency rate in a city in Japan. The electricity consumed in the building is mainly supplied by solar panels, while the gap between the energy demand and supply is solved by the FC that is powered by the H2 produced by water electrolysis with surplus power of PV. A desktop case study of using the proposed system in Tsu city which is located in central part of Japan, has been conducted. The results found that the self-sufficiency rates of PV system to electricity demand of households (RPV) during the daytime in April and July are higher than those in January and October. The results also reveal that the self-sufficiency rate of FC system to the electricity demand (RFC) is 15% - 38% for the day when the mean amount of horizontal solar radiation is obtained in January, April, July and October. In addition, it is found the optimum tilt angle of solar panel installed on the roof of the buildings should be 0 degree, i.e., placed horizontally.
文摘In this paper,a detailed model of a photovoltaic(PV)panel is used to study the accumulation of dust on solar panels.The presence of dust diminishes the incident light intensity penetrating the panel’s cover glass,as it increases the reflection of light by particles.This phenomenon,commonly known as the“soiling effect”,presents a significant challenge to PV systems on a global scale.Two basic models of the equivalent circuits of a solar cell can be found,namely the single-diode model and the two-diode models.The limitation of efficiency data in manufacturers’datasheets has encouraged us to develop an equivalent electrical model that is efficient under dust conditions,integrated with optical transmittance considerations to investigate the soiling effect.The proposed approach is based on the use of experimental current-voltage(I-V)characteristics with simulated data using MATLAB/Simulink.Our research outcomes underscores the feasibility of accurately quantifying the reduction in energy production resulting from soiling by assessing the optical transmittance of accumulated dust on the surface of PV glass.
基金Project supported by the Beijing Natural Science Foundation Program,China(Grant No.4192016)。
文摘Based on the transport equation of the semiconductor device model for 0.524 e V Ge Sn alloy and the experimental parameters of the material,the thermal-electricity conversion performance governed by a Ge Sn diode has been systematically studied in its normal and inverted structures.For the normal p^(+)/n(n^(+)/p)structure,it is demonstrated here that an optimal base doping N_(d(a))=3(7)×10^(18)cm^(-3) is observed,and the superior p^(+)/n structure can achieve a higher performance.To reduce material consumption,an economical active layer can comprise a 100 nm-300 nm emitter and a 3μm-6μm base to attain comparable performance to that for the optimal configuration.Our results offer many useful guidelines for the fabrication of economical Ge Sn thermophotovoltaic devices.
基金supported by the Key Research and Development Projects in Shaanxi Province(Program No.2021GY-306)the Innovation Capability Support Program of Shaanxi(Program No.2022KJXX-41)the Key Scientific and Technological Projects of Xi’an(Program No.2022JH-RGZN-0005).
文摘The accumulation of snow and ice on PV modules can have a detrimental impact on power generation,leading to reduced efficiency for prolonged periods.Thus,it becomes imperative to develop an intelligent system capable of accurately assessing the extent of snow and ice coverage on PV modules.To address this issue,the article proposes an innovative ice and snow recognition algorithm that effectively segments the ice and snow areas within the collected images.Furthermore,the algorithm incorporates an analysis of the morphological characteristics of ice and snow coverage on PV modules,allowing for the establishment of a residual ice and snow recognition process.This process utilizes both the external ellipse method and the pixel statistical method to refine the identification process.The effectiveness of the proposed algorithm is validated through extensive testing with isolated and continuous snow area pictures.The results demonstrate the algorithm’s accuracy and reliability in identifying and quantifying residual snow and ice on PV modules.In conclusion,this research presents a valuable method for accurately detecting and quantifying snow and ice coverage on PV modules.This breakthrough is of utmost significance for PV power plants,as it enables predictions of power generation efficiency and facilitates efficient PV maintenance during the challenging winter conditions characterized by snow and ice.By proactively managing snow and ice coverage,PV power plants can optimize energy production and minimize downtime,ensuring a sustainable and reliable renewable energy supply.
基金supported by National Natural Science Foundation of China(No.516667017).
文摘Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction.
文摘Amorphous carbon (a-C) thin films have been synthesized by microwave (MW) surface wave plasma (SWP) chemical vapor deposition (CVD) on n-type silicon and quartz substrates, aiming at the application of the films for photovoltaic solar cells. Argon, acetylene and trimethylboron were used as a carrier, source and dopant gases. Analytical methods such as X-ray photoelectron spectroscopy (XPS), Hall Effect measurement, JASCO V-570 UV/VIS/NIR spectroscopy, Raman spectroscopy, Transmission electron microscopy (TEM) and Solar simulator were employed to investigate chemical, optical, structural and electrical properties of the a-C films. Two types of solar cells of configuration p-C/n-Si and p-C/i-C/n-Si have been fabricated and their current-voltage characteristics under dark and illumination (AM 1.5, 100 mW/cm2) have been studied. The two solar cells showed rectifying curves under the dark condition confirming the heterojunction carbon based solar cell between p-C and n-Si. When illuminated by the solar simulator light the devices showed photovoltaic behavior. The heterojunction device (p-C/i-C/n-Si) having inserted intrinsic carbon film between p-C and n-Si exhibited significant enhancement of the conversation efficiency (0.167% to 2.349%) over the device (p-C/n-Si).
基金Project supported by the Special Funds for the Development of Strategic Emerging Industries in Shenzhen City,China(Grant No.JCYJ20120830154526537)Start-up Funding of the South University of Science and Technology of China,and the Strategic Research Grant of the City University of Hong Kong(Grant No.7002724)
文摘Efficient heterojunction organic photovoltaic (OPV) cells are fabricated based on copper tetra-methyl phthalocyanine (CuMePc) as donor and fullerene (C60) as acceptor. The power conversion efficiency of CuMePc/C60 OPV cell (2.52%) is increased by 88% compared with that of the non-peripheral substituted copper phthalocyanine (CuPc)/C60 OPV cell (1.34%). The introduction of methyl substituent leads to stronger π–π interaction of CuMePc (~ 3.5 ?) than that of CuPc (~ 3.8 ?). The efficiency improvement is attributed to the enhanced carrier mobility of CuMePc thin film (1.1×10-3 cm2/V·s) and better film morphology by introducing methyl groups into the periphery of CuPc molecule.
基金supported by the Research University Grant(GUP-Tier 1) under Vote No.19H40
文摘Langkawi SkyCab has the highest energy demand in Langkawi Island and the demand keeps increasing year by year.This study proposed alternatives energy of a hybrid photovoltaic(PV)and fuel cell system for the SkyCab’s operation.The best sizing and configurations were chosen based on Homer simulation software.A comparative study was done between a conventional system and other hybrid combinations.The results revealed that the proposed system had reduced the cost as well as CO2 emission almost by 39%and 79%,respectively.The hybrid PV and fuel cell system is aligned with the Malaysian government’s goals of reducing carbon emissions 40%by the year 2030.