期刊文献+
共找到770篇文章
< 1 2 39 >
每页显示 20 50 100
Energy conversion materials for the space solar power station 被引量:2
1
作者 任晓娜 葛昌纯 +6 位作者 陈志培 伊凡 涂用广 张迎春 王立 刘自立 关怡秋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期124-131,共8页
Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on ... Since it was first proposed,the space solar power station(SSPS)has attracted great attention all over the world;it is a huge space system and provides energy for Earth.Although several schemes and abundant studies on the SSPS have been proposed and conducted,it is still not realized.The reason why SSPS is still an idea is not only because it is a giant and complex project,but also due to the requirement for various excellent space materials.Among the diverse required materials,we believe energy materials are the most important.Herein,we review the space energy conversion materials for the SSPS. 展开更多
关键词 space solar power station photovoltaic cell thermoelectric materials LASERS
下载PDF
Efficient Choice of a Multilevel Inverter for Integration on a Hybrid Wind-Solar Power Station
2
作者 Tajeddine Khalili Abdelhadi Raihani +2 位作者 Hassan Ouajji Omar Bouattane Fouad Amri 《Journal of Power and Energy Engineering》 2015年第9期44-58,共15页
DC/AC converters are very important components that have to be chosen efficiently for each type of power station. In this article, we present in details, a comparison between three different architectures of multileve... DC/AC converters are very important components that have to be chosen efficiently for each type of power station. In this article, we present in details, a comparison between three different architectures of multilevel inverters, the flying capacitor multilevel inverter (FCMLI), the diode clamped multilevel inverter (DCMLI), and the cascaded H-bridge multilevel inverter (CHMLI). Thus the comparison is focused on the output voltage quality, the complexity of the power circuits, the cost of implementation, and the influence on a power bank inside the renewable power station. We also investigate trough simulation the efficient number of levels and suitable characteristics for the CHMLI that showed the most promising performance. The study uses Matlab Simulink platform as a tool of simulation, and aim to choose the most qualified inverter, for a potential insertion on a hybrid renewable energy platform (wind-solar). In all the simulations we use the same PWM control type (SPWM). 展开更多
关键词 MULTILEVEL INVERTERS FCMLI DCMLI CHMLI hybrid power station SPWM power BANK
下载PDF
Solar Energy Resource Characteristics of Photovoltaic Power Station in Shandong Province 被引量:2
3
作者 薛德强 王新 王新堂 《Agricultural Science & Technology》 CAS 2013年第4期666-671,共6页
[Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar ener... [Objective] The aim was to analyze characters of solar energy in photo- voltaic power stations in Shandong Province. [Method] The models of total solar radiation and scattered radiation were determined, and solar energy resources in pho-tovoltaic power stations were evaluated based on illumination in horizontal plane and cloud data in 123 counties or cities and observed information in Jinan, Fushan and Juxian in 1988-2008. [Result] Solar energy in northern regions in Shandong proved most abundant, which is suitable for photovoltaic power generation; the optimal angle of tilt of photovoltaic array was at 35°, decreasing by 2°-3° compared with local latitude. Total solar radiation received by the slope with optimal angle of tilt exceeded 1 600 kw.h/(m2.a), increasing by 16% compared with horizontal planes. The maximal irradiance concluded by WRF in different regions tended to be volatile in 1 020-1 060 W/m2. [Conclusion] The research provides references for construction of photovoltaic power stations in Shandong Province. 展开更多
关键词 Shandong Province solar energy resource Photovoltaic power stations Optimum tilt angle WRF(weather research and forecasting model) Maximal daily irradiance
下载PDF
Economic feasibility of large-scale hydro–solar hybrid power including long distance transmission 被引量:6
4
作者 Zhenchen Deng Jinyu Xiao +3 位作者 Shikun Zhang Yuetao Xie Yue Rong Yuanbing Zhou 《Global Energy Interconnection》 2019年第4期290-299,共10页
Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that c... Solar PV is expected to become the most cost-competitive renewable energy owing to the rapidly decreasing cost of the system. On the other hand, hydropower is a high-quality and reliable regulating power source that can be bundled with solar PV to improve the economic feasibility of long-distance transmitted power. In this paper, a quantification model is established taking into account the regulating capacity of the reservoir, the characteristics of solar generation, and cost of hydro and solar PV with long-distance transmission based on the installed capacity ratio of hydro–solar hybrid power. Results indicate that for hydropower stations with high regulating capacity and generation factor of approximately 0.5, a hydro–solar installed capacity ratio of 1:1 will yield overall optimal economic performance, whereas for hydropower stations with daily regulating capacity reservoir and capacity factor of approximately 0.65, the optimal hydro–solar installed capacity ratio is approximately 1:0.3. In addition, the accuracy of the approach used in this study is verified through operation simulation of a hydro–solar hybrid system including ultra high-voltage direct current(UHVDC) transmission using two case studies in Africa. 展开更多
关键词 HYDROpower solar power Multi-energy hybrid system Economic analysis UHVDC transmission Hydro–solar hybrid power
下载PDF
Study on integrated development and hybrid operation mode of nuclear power plant and pumped-storage power station 被引量:6
5
作者 Haizheng Wang Caide Peng 《Global Energy Interconnection》 2019年第4期336-341,共6页
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode... The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed. 展开更多
关键词 NUCLEAR power PLANT Pumped-storage power station Integrated development hybrid operation MODES
下载PDF
Short-term power generation scheduling rules for cascade hydropower stations based on hybrid algorithm 被引量:2
6
作者 Wei XIE Chang-ming JI +1 位作者 Zi-jun YANG Xiao-xing ZHANG 《Water Science and Engineering》 EI CAS 2012年第1期46-58,共13页
Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity... Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching. 展开更多
关键词 scheduling rule short-time power generation dispatching hybrid algorithm cascade hydropower station
下载PDF
Figure of Merit Analysis of a Hybrid Solar-geothermal Power Plant 被引量:1
7
作者 Cheng Zhou Elham Doroodchi Behdad Moghtaderi 《Engineering(科研)》 2013年第1期26-31,共6页
Figure of merit analysis is a general methodology used to evaluate whether a hybrid power plant could produce more power than two stand-alone power plants. In this paper, the assessment methodology using figure of mer... Figure of merit analysis is a general methodology used to evaluate whether a hybrid power plant could produce more power than two stand-alone power plants. In this paper, the assessment methodology using figure of merit analysis was re-examined for a hybrid solar-geothermal power plant. A new definition of the figure of merit was introduced specifically for a solar boosted geothermal plant to include both the technical and economic factors. The new definition was then applied in a case study of a hypothetical demonstration hybrid solar-geothermal power plant in Australia. The power plant was considered to have a typical net power output of 2.2 MW with a solar energy fraction of 27%. The analysis was performed to compare the power output and capital cost of the hybrid plant with the state-of-the-art (SoA) and existing stand-alone solar and geothermal plants. Based on the new definition, the hybrid plant was found to generally outperform the two existing stand-alone plants. Moreover, at an ambient temperature of 5 °C, the hybrid plant was found to outperform the SoA stand-alone plants when the geothermal temperature was greater than 150 °C. For geothermal temperature of 180 °C on the other hand, the hybrid plant outperformed the SoA stand-alone plants at ambient temperatures lower than 33 °C. 展开更多
关键词 FIGURE of MERIT hybrid RENEWABLE energy system solar GEOTHERMAL power generation
下载PDF
Multi-Layer and Multi-Objective Optimization Design of Supporting Structure of Large-Scale Spherical Solar Concentrator for the Space Solar Power Station
8
作者 Yang Yang Jun Hu +1 位作者 Lin Zhu Mengchen Pei 《Journal of Renewable Materials》 SCIE EI 2022年第11期2835-2849,共15页
Space solar power station is a novel renewable energy equipment in space to provide the earth with abundant and continuous power.The Orb-shaped Membrane Energy Gathering Array,one of the alternative construction schem... Space solar power station is a novel renewable energy equipment in space to provide the earth with abundant and continuous power.The Orb-shaped Membrane Energy Gathering Array,one of the alternative construction schemes in China,is promising for collecting space sunlight with a large-scale spherical concentrator.Both the structural and optical performances such as root mean square deformation,natural frequency,system mass,and sunlight blocking rate have significant influences on the system property of the concentrator.Considering the comprehensive performance of structure and optic,this paper proposes a novel mesh grid based on normal polyhedron projection and spherical arc bisection for the supporting structure to deal with the challenge of the large-scale structural modular design.For both achieving low system mass and high surface precision,a multilayer and multi-objective optimization model is proposed by classifying the supporting structure into different categories and optimizing their internal and external diameters.The Particle Swarm Optimization algorithm is adopted to find optimal sectional dimensions of the different kinds of supporting structure.The infinite model is also established and structural analysis is carried out,which are expected to provide a certain reference for the subsequent detailed structural design.The numerical results indicate that the spherical concentrator designed by the novel mesh grid would obtain as high as 94.37%sunlight collection efficiency.The supporting structure constructed with the multiple layers would reduce the system quality by 6.92%,sunlight blocking rate by 28.54%,maximum deformation by 41.50%,and root mean square by 9.48%to the traditional single layer,respectively. 展开更多
关键词 solar power space solar power station the OMEGA concept structural optimization particle swarm optimization
下载PDF
Assessment of Hybrid Concentrated Solar Power-Biomass Plant Generation Potential in Sahel: Case Study of Senegal
9
作者 Ababacar Thiam Cheikh Mbow +2 位作者 Mactar Faye Pascal Stouffs Dorothé Azilinon 《Natural Resources》 2017年第8期531-547,共17页
Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitabl... Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitable sites to accommodate them. Conversely, CSP-biomass plants due to lower investment may be an option for CSP penetration in Sahel where Direct Normal Irradiation (DNI) is between 1400 kWh/m2/year and 2000 kWh/m2/year and significant biomass potential. This work presents the results of an identification of suitable sites for hybrid CSP-Biomass in the Sahel, case study of Senegal, taking into account the Direct Normal Irradiation, the availability of water, space and biomass potential. The identified sites have a DNI > 1600 kWh/m2/year. The biogas production capacity is equivalent to 5,096,563 m3/year. The quantity of Typha Australis, invasive plant in Senegal river valley available is estimated at more than 3 million tons. The capacity of electrical energy in this zone is estimated at 6.89 GWe for an installation surface estimated at 275.61 km2. The establishment of CSP/hybrid plants can also contribute to combat the proliferation of Typha Australis. 展开更多
关键词 Biomass CONCENTRATING solar power (CSP) Direct Normal Irradiation (DNI) hybrid TYPHA AUSTRALIS
下载PDF
Distributed power conditioning unit of large-scale space solar power station
10
作者 Xintong LI Jianwei MI +2 位作者 Yiqun ZHANG Guanheng FAN Jie DU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第8期421-434,共14页
In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple... In this paper,a multi-bus distributed Power Conditioning Unit(PCU)is proposed for the Space Solar Power Station with large scale photovoltaic(PV)array and power levels reaching MW level.In this unit,there are multiple independent PV arrays.In each PV array,there are multiple independent PV subarrays.In this paper,a V-P droop control method with adaptive droop coefficient is proposed,which modifies the droop intercept based on the bus voltage deviation and the power per unit value of the PV array.This method ensures the accuracy of bus voltage and achieves proportional distribution of power between PV arrays based on the proposed topology structure in this paper.When the load changes or the output power of the PV array fluctuates,this method can ensure that power is distributed proportionally.The principle and control method of the proposed droop control method is analyzed in this paper.The effectiveness of the method is verified through MATLAB/Simulink simulation and experiment.Simulation and experimental results show that the proposed method can achieve power distributed proportionally when load changes and PV output power fluctuates,reduce bus voltage error caused by line impedance and differences in rated power of different PV arrays,and improve the performance of PV power generation system applied to space. 展开更多
关键词 Space solar power station Photovoltaics Droop control DC confluence power conditioning unit
原文传递
Cascade utilization of full spectrum solar energy for achieving simultaneous hydrogen production and all-day thermoelectric conversion
11
作者 Tuo Zhang Liang Dong +8 位作者 Baoyuan Wang Jingkuo Qu Xiaoyuan Ye Wengao Zeng Ze Gao Bin Zhu Ziying Zhang Xiangjiu Guan Liejin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期318-327,共10页
Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the ina... Solar-driven photocatalytic water/seawater splitting holds great potential for green hydrogen production.However,the practical application is hindered by the relatively low conversion efficiency resulting from the inadequate utilization of solar spectrum with significant waste in the form of heat.Moreover,current equipment struggles to maintain all-day operation subjected to the lack of light during nighttime.Herein,a novel hybrid system integrating photothermal catalytic(PTC)reactor,thermoelectric generator(TEG),and phase change materials(PCM)was proposed and designed(named as PTC-TEG-PCM)to address these challenges and enable simultaneous overall seawater splitting and 24-hour power generation.The PTC system effectively maintains in an optimal temperature range to maximize photothermal-assisted photocatalytic hydrogen production.The TEG component recycles the low-grade waste heat for power generation,complementing the shortcoming of photocatalytic conversion and achieving cascade utilization of full-spectrum solar energy.Furthermore,exceptional thermal storage capability of PCM allow for the conversion of released heat into electricity during nighttime,contributing significantly to the overall power output and enabling PTC-TEG-PCM to operate for more than 12 h under the actual condition.Compared to traditional PTC system,the overall energy conversion efficiency of the PTC-TEG-PCM system can be increased by∼500%,while maintaining the solar-to-hydrogen efficiency.The advancement of this novel system demonstrated that recycling waste heat from the PTC system and utilizing heat absorption/release capability of PCM for thermoelectric application are effective strategies to improve solar energy conversion.With flexible parameter designing,PTC-TEG-PCM can be applied in various scenarios,offering high efficiency,stability,and sustainability. 展开更多
关键词 hybrid solar energy conversion system Photocatalytic overall seawatersplitting Thermoelectric power generation Phase change materials All-day operation
下载PDF
Design of a Level-3 electric vehicle charging station using a 1-MW solar system via the distributed maximum power point tracking technique
12
作者 Afshin Balal Michael Giesselmann 《Clean Energy》 EI CSCD 2024年第1期23-35,共13页
Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the pos... Solar power is mostly influenced by solar irradiation,weather conditions,solar array mismatches and partial shading conditions.Therefore,before installing solar arrays,it is necessary to simulate and determine the possible power generated.Maximum power point tracking is needed in order to make sure that,at any time,the maximum power will be extracted from the photovoltaic system.However,maximum power point tracking is not a suitable solution for mismatches and partial shading conditions.To overcome the drawbacks of maximum power point tracking due to mismatches and shadows,distributed maximum power point tracking is util-ized in this paper.The solar farm can be distributed in different ways,including one DC-DC converter per group of modules or per module.In this paper,distributed maximum power point tracking per module is implemented,which has the highest efficiency.This technology is applied to electric vehicles(EVs)that can be charged with a Level 3 charging station in<1 hour.However,the problem is that charging an EV in<1 hour puts a lot of stress on the power grid,and there is not always enough peak power reserve in the existing power grid to charge EVs at that rate.Therefore,a Level 3(fast DC)EV charging station using a solar farm by implementing distributed maximum power point tracking is utilized to address this issue.Finally,the simulation result is reported using MATLAB®,LTSPICE and the System Advisor Model.Simulation results show that the proposed 1-MW solar system will provide 5 MWh of power each day,which is enough to fully charge~120 EVs each day.Additionally,the use of the proposed photovoltaic system benefits the environment by removing a huge amount of greenhouse gases and hazardous pollutants.For example,instead of supplying EVs with power from coal-fired power plants,1989 pounds of CO_(2) will be eliminated from the air per hour. 展开更多
关键词 electric vehicles(EVs) distributed maximum power point tracking solar farm DC fast-charging station step-up DC-DC converter System Advisor Model economic analysis
原文传递
Feasibility Analysis of Constructing Solar Power Plant by Combining Large Scale Wind Farm
13
作者 Mingzhi Zhao Yanling Zhang +1 位作者 Shijin Song Xiaoming Zhang 《Energy and Power Engineering》 2013年第4期89-91,共3页
Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar... Hybrid utilization of renewable energy is one of effective method which can solve the problem that unstable of renewable energy so as not to substitute traditional fossil energy. As the typical renewable energy, solar energy and wind energy are in the van of renewable energy utilization. With the large scale utilization of solar and wind energy in the world, constructing large scale solar power plant in the large scale wind farm can make the most of ground resource combining the wind energy with solar energy. Feasibility of constructing large scale solar power plant in the large scale wind farm was analyzed in this paper, and come to a conclusion that constructing large scale solar power plant in the large scale wind farm can not also achieved the goal of mutual support of resource advantages and economizing money but also improved significantly the seasonal mismatch by combining solar with wind. 展开更多
关键词 hybrid UTILIZATION solar power Plant WIND FARM
下载PDF
Hybrid Power System Options for Off-Grid Rural Electrification in Northern Kenya
14
作者 June M. Lukuyu Judith B. Cardell 《Smart Grid and Renewable Energy》 2014年第5期89-106,共18页
For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emis... For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%. 展开更多
关键词 hybrid power SYSTEM OFF-GRID power SYSTEM Wind ENERGY solar ENERGY Battery Storage MULTI-ATTRIBUTE Trade-Off Analysis
下载PDF
Technical challenges of space solar power stations:Ultra-large-scale space solar array systems and space environmental effects
15
作者 Weinan Zhang Chengyue Sun +6 位作者 Ke Liu Wenhao Shen YiYong Wu Liyong Yao Qi Zhang Wei Zhang Li Wang 《Space Solar Power and Wireless Transmission》 2024年第2期69-87,共19页
Space solar power station(SSPS)are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment.As the ener... Space solar power station(SSPS)are important space infrastructure for humans to efficiently utilize solar energy and can effectively reduce the pollution of fossil fuels to the earth’s natural environment.As the energy conversion system of SSPS,solar array is an important unit for the successful service of SSPS.Today,solar arrays represent the standard technology for providing energy for spacecraft,thanks to their high conversion efficiency and reliability/stability in orbit.With the development of solar arrays,many new materials,new photovoltaic devices and new control systems have emerged.Solar arrays are directly exposed to the space environment,and harsh environmental factors can degrade the performance.To ensure the long-term safe inorbit service of SSPS as well as its ultra-large solar array,these new materials,devices,and control systems must operate certification and evaluation that can be used in space applications.In this review,the development history and research progress of SSPS and the corresponding space solar arrays are summarized and discussed,and the space environmental effects of solar arrays are analyzed at multiple levels(materials,devices,and systems).Finally,in response to the current space environmental effects of the ultra-large solar array used in the SSPS,future development trends and challenges are proposed. 展开更多
关键词 Space solar power stations Space solar array Space environmental effects Health management
原文传递
Research on PV array reconstruction and Full-cycle maximum power point tracking technology of space solar power station
16
作者 Guoning Xu Shuoyan Nie Zhenyang Xiong 《Space Solar Power and Wireless Transmission》 2024年第2期115-128,共14页
Space solar power station is an energy system that converts solar energy into electrical energy in the space environment and then transmits it to the space platform or ground using wireless power transmission technolo... Space solar power station is an energy system that converts solar energy into electrical energy in the space environment and then transmits it to the space platform or ground using wireless power transmission technology.To improve the power generation and system efficiency of the space solar power station,an adaptive and reconfigurable photovoltaic array with multi-configuration is proposed,which can avoid large attenuation of the output power and efficiency of the photovoltaic array when the photovoltaic modules have a fault occurs or the receive different irradiation intensity.Then,according to the orbit area and light condition of the space solar power station,the operation mode are divided in detail.Furthermore,a novel full-cycle and multi-mode GMPPT(maximum power point tracking)strategy is proposed.Compared to the single mode MPPT,the control strategy has shorter response time,faster convergence and higher tracking accuracy.Through the above research,the output power and photoelectric conversion efficiency of space solar power station can be significantly improved. 展开更多
关键词 Space solar power station PV array reconstruction Full-cycle MPPT strategy
原文传递
A review of dynamic analysis on space solar power station 被引量:2
17
作者 Weipeng Hu Zichen Deng 《Astrodynamics》 EI CSCD 2023年第2期115-130,共16页
The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent in... The concept of a space solar power station(SSPS)was proposed in 1968 as a potential approach for solving the energy crisis.In the past 50 years,several structural concepts have been proposed,but none have been sent into orbit.One of the main challenges of the SSPS is dynamic behavior prediction,which can supply the necessary information for control strategy design.The ultra-large size of the SSPS causes difficulties in its dynamic analysis,such as the ultra-low vibration frequency and large fexibility.In this paper,four approaches for the numerical analysis of the dynamic problems associated with the SSPS are reviewed:the finite element,absolute nodal coordinate,foating frame formulation,and structure-preserving methods.Both the merits and shortcomings of the above four approaches are introduced when they are employed in dynamic problems associated with the SSPS.Synthesizing the merits of the aforementioned four approaches,we believe that embedding the structure-preserving method into finite element software may be an effective way to perform a numerical analysis of the dynamic problems associated with the SSPS. 展开更多
关键词 space solar power station(SSPS) finite element method absolute nodal coordinate method floating frame formulation method structure-preserving method
原文传递
Economic Analysis and Environmental Impacts of a Hybrid PV System in Arid Climate Considering Different Types of Solar Trackers
18
作者 Yahya Z. Alharthi Mahbube K. Siddiki Ghulam M. Chaudhry 《Smart Grid and Renewable Energy》 2018年第10期199-214,共16页
This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA).... This paper presents a study aimed at evaluating and comparing the performance of six different tracking systems for photovoltaic (PV) with diesel-battery hybrid system in arid climate of Kingdom of Saudi Arabia (KSA). The study considered various technical and economic factors including system net present cost (NPC), levelized cost of energy (LCOE), and PV power generation using energy analysis and microgrid design software “HOMER”. It also presents an overview of the current electricity production and demand in the Kingdom. The weather data used in this study have been collected from the new solar atlas launched by King Abdullah City for Atomic and Renewable Energy (KACARE). The selected solar resource monitoring station for this study is located near to Riyadh city and has an annual average daily total irradiation of 6300 W/m2/day. The study shows that, for stand-alone PV system in the vicinity of Riyadh city, tracking system is economically better than fixed angle system. Among the considered tracking systems, VCA system is the most preferable as it has low NPC and LCOE values with a high return on investment (ROI) as well as low carbon dioxide (CO2) emissions due to a high renewable energy penetration. 展开更多
关键词 RENEWABLE Energy solar power hybrid PV SYSTEM solar Trackers HOMER SYSTEM Planning
下载PDF
Design of a Hybrid Wind-Solar Energy System for an Agro-industrial Residential Area in Bota-Limbe, Cameroon
19
作者 Chu Donatus Iweh Lemundem Marius 《Journal of Energy and Power Engineering》 2019年第6期240-248,共9页
This paper proposes the most feasible technical and environmentally friendly hybrid power system configuration;a stand-alone hybrid wind-solar energy system with battery storage for a residential area of an Agro-indus... This paper proposes the most feasible technical and environmentally friendly hybrid power system configuration;a stand-alone hybrid wind-solar energy system with battery storage for a residential area of an Agro-industrial Company, Cameroon Development Cooperation (CDC), with headquarters in Bota-Limbe, south west region, Cameroon. The power network of the CDC Bota-Limbe Camp amongst other camps, which accommodates plantation workers, is plagued with challenges such as reliance on grid power which is unreliable, poor power quality which endangers home appliances and a spider webbed transmission system that poses as a threat to the lives of plantation workers. This paper addresses those concerns by designing a modular hybrid solar-wind renewable energy system for the camp. Limbe is a coastal area with proven existence of wind and solar resources. It is expected that the proposed system, if adopted and well implemented, will provide huge opportunities for the CDC in several other locations in Cameroon where there is adequate supply of renewable energy resources. 展开更多
关键词 hybrid power system solar WIND RENEWABLE energy RESOURCES Agro-industrial COMPANY
下载PDF
A switchable concentrating photovoltaic/concentrating solar power(CPV/CSP)hybrid system for flexible electricity/thermal generation
20
作者 PAN XinYu YUAN MengDi +1 位作者 JU Xing XU Chao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2023年第8期2332-2345,共14页
Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concen... Due to the intermittency and indeterminacy of solar irradiance,balancing energy supply and load demand remains a challenge.This paper proposed a switchable hybrid system that combines concentrating photovoltaic/concentrating solar power(CPV/CSP)technology with thermal energy storage(TES)to achieve flexible electricity and thermal generation by adjusting the incident solar flux of photovoltaic(PV).The hybrid system can directly transfer surplus solar energy into high-quality heat for storage using a rotatable PV/heat receiver.The simulated results demonstrated that the hybrid system effectively improves power generation,optimally utilizes TES capacity,and reduces the levelized cost of electricity(LCOE).Over a selected seven-day period,the single-junction(1J)Ga As solar cells used in the hybrid system sustainably satisfied the load demand for more than five days without grid supplement,outperforming the CSP plant by an additional two days.The hybrid system utilizing the 1J Ga As with the base configuration of solar multiple(SM)of 1.26 and TES capacity of 5 h improved the annual power production and renewable penetration(RP)by 20.8%and 24.8%compared with the conventional CSP plant,respectively.The hybrid plant with monosilicon and a configuration of SM(1.8),PV ratio(1),and TES capacity(6 h)achieved an optimal LCOE of11.52$ct/k Wh and RP of 75.5%,which is 8.8%lower and 12.1%higher than the CSP plant,respectively. 展开更多
关键词 concentrated photovoltaic concentrated solar power hybrid system flexible electricity/thermal ratio techno-economic analysis
原文传递
上一页 1 2 39 下一页 到第
使用帮助 返回顶部