For a future carbon-neutral society,it is a great challenge to coordinate between the demand and supply sides of a power grid with high penetration of renewable energy sources.In this paper,a general power distributio...For a future carbon-neutral society,it is a great challenge to coordinate between the demand and supply sides of a power grid with high penetration of renewable energy sources.In this paper,a general power distribution system of buildings,namely,PEDF(photovoltaics,energy storage,direct current,flexibility),is proposed to provide an effective solution from the demand side.A PEDF system integrates distributed photovoltaics,energy storages(including traditional and virtual energy storage),and a direct current distribution system into a building to provide flexible services for the external power grid.System topology and control strategies at the grid,building,and device levels are introduced and analyzed.We select representative work about key technologies of the PEDF system in recent years,analyze research focuses,and summarize their major challenges&future opportunities.Then,we introduce three real application cases of the PEDF system.On-site measurement results demonstrate its feasibility and advantages.With the rapid growth of renewable power production and electric vehicles,the PEDF system is a potential and promising approach for largescale integration of renewable energy in a carbon-neutral future.展开更多
The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildi...The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.展开更多
基金supported in part by the National Natural Science Foundation of China(No.52208112)the major consulting project of the Chinese Academy of Engineering(52021-HYZD-16)+1 种基金the Energy Foundation(No.G-2209-34123),the China Postdoctoral Science Foundation(2021M701935)the Shuimu Tsinghua Scholar Program of Tsinghua University(2021SM001).
文摘For a future carbon-neutral society,it is a great challenge to coordinate between the demand and supply sides of a power grid with high penetration of renewable energy sources.In this paper,a general power distribution system of buildings,namely,PEDF(photovoltaics,energy storage,direct current,flexibility),is proposed to provide an effective solution from the demand side.A PEDF system integrates distributed photovoltaics,energy storages(including traditional and virtual energy storage),and a direct current distribution system into a building to provide flexible services for the external power grid.System topology and control strategies at the grid,building,and device levels are introduced and analyzed.We select representative work about key technologies of the PEDF system in recent years,analyze research focuses,and summarize their major challenges&future opportunities.Then,we introduce three real application cases of the PEDF system.On-site measurement results demonstrate its feasibility and advantages.With the rapid growth of renewable power production and electric vehicles,the PEDF system is a potential and promising approach for largescale integration of renewable energy in a carbon-neutral future.
基金supported by Guangxi Power Grid Science and Technology Project(GXKJXM20222069).
文摘The integration of photovoltaic,energy storage,direct current,and flexible load(PEDF)technologies in building power systems is an importantmeans to address the energy crisis and promote the development of green buildings.The friendly interaction between the PEDF systems and the power grid can promote the utilization of renewable energy and enhance the stability of the power grid.For this purpose,this work introduces a framework of multiple incentive mechanisms for a PEDF park,a building energy system that implements PEDF technologies.The incentive mechanisms proposed in this paper include both economic and noneconomic aspects,which is the most significant innovation of this paper.By modeling the relationship between a PEDF park and the power grid into a Stackelberg game,we demonstrate the effectiveness of these incentive measures in promoting the friendly interaction between the two entities.In this game model,the power grid determines on the prices of electricity trading and incentive subsidy,aiming to maximize its revenue while reducing the peak load of the PEDF park.On the other hand,the PEDF park make its dispatch plan according to the prices established by the grid,in order to reduce electricity consumption expense,improve electricity utility,and enhance the penetration rate of renewable energy.The results show that the proposed incentive mechanisms for the PEDF park can help to optimize energy consumption and promote sustainable energy practices.