期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Cobalt phthalocyanine-based conjugated polymer as efficient and exclusive electrocatalyst for CO_(2) reduction to ethanol
1
作者 Dong Jiang Ran Bu +6 位作者 Wei Xia Yichen Hu Mengchen Zhou Enqing Gao Toru Asahi Yusuke Yamauchi Jing Tang 《Materials Reports(Energy)》 2023年第1期100-106,I0004,共8页
Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been ... Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity. 展开更多
关键词 cobalt phthalocyanine based conjugated polymer Carbon dioxide electroreduction Liquid products ETHANOL
下载PDF
Effect of Cobalt Phthalocyanine on Floating-Charge Performance of Nickel-Metal Hydride Battery
2
作者 王芳 吴锋 +1 位作者 陈实 王国庆 《Journal of Rare Earths》 SCIE EI CAS CSCD 2004年第5期649-653,共5页
In Ni-MH battery, oxygen evolution causes a high inner pressure during charge and overdischarge, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obst... In Ni-MH battery, oxygen evolution causes a high inner pressure during charge and overdischarge, and an inappropriate eliminating way of the oxygen in the battery results in accumulation of heat. This is the main obstacle to develop and apply high capability and high power battery. In this paper, effect of cobalt phthalocyanine (CoPc) on the floating-charge performance of Ni-MH batteries are examined. Experimental results show that the battery with CoPc additive by appropriate adding way displayed a better capability of floating charge and discharge than the one without CoPc. The battery with CoPc added into electrolyte shows the best charging efficiency and cycleability and the slowest increasing speed of inner pressure after 2000th charge and discharge. 展开更多
关键词 Ni-MH batteries electrochemical catalyst cobalt phthalocyanine floating-charge inner pressure rare earths
下载PDF
Didodecyldimethylammonium Bromide Films Containing Cobalt Phthalocyanine Tetrasulfonate for Electrochemical Catalysis
3
作者 Nai Fei HU Rong HUANG Jing YANG (Department of Chemistry,Beijing Normal University, Beijing 100875) 《Chinese Chemical Letters》 SCIE CAS CSCD 1999年第2期123-124,共2页
Electrochemistry of didodecyldimethylammonium (DDAB) films containing cobalt phthalocyanine tetrasulfonate (CoPcTS4-) was examined. CoPcTS4--DDAB film electrode showed stable cyclic voltammetric responses in buffers a... Electrochemistry of didodecyldimethylammonium (DDAB) films containing cobalt phthalocyanine tetrasulfonate (CoPcTS4-) was examined. CoPcTS4--DDAB film electrode showed stable cyclic voltammetric responses in buffers and could catalyze reductions of trichloroacetic acid. 展开更多
关键词 cobalt phthalocyanine tetrasulfonate didodecyldimethylammonium bromide electrochemical catalysis
下载PDF
Constructing S-scheme charge separation in cobalt phthalocyanine/oxygen-doped g-C_(3)N_(4) heterojunction with enhanced photothermal-assisted photocatalytic H_(2) evolution 被引量:1
4
作者 Wei-Long Shi Zheng Xu +6 位作者 Yu-Xing Shi Ling-Ling Li Jia-Lin Lu Xin-Hai Sun Xin Du Feng Guo Chang-Yu Lu 《Rare Metals》 SCIE EI CAS CSCD 2024年第1期198-211,共14页
Hydrogen acquisition from solar energy is an effective way to address energy crisis,which makes the development of efficient photocatalysts become the main direction of scientific research.Herein,cobalt phthalocyanine... Hydrogen acquisition from solar energy is an effective way to address energy crisis,which makes the development of efficient photocatalysts become the main direction of scientific research.Herein,cobalt phthalocyanine/oxygen-doped g-C_(3)N_(4)(CoPc/OCN) S-scheme heterojunction photocatalyst was designed by coupling multi-step calcination with solvothermal method for enhanced photothermal-assisted photocatalytic H_(2) evolution.The multistep calcined g-C_(3)N_(4) is easier for O-doping formation,and the ethanol solvothermal strategy is utilized to enhance the dispersion of CoPc on OCN nano sheet surface and forms sufficient S-scheme heterojunction through H-bonds.In addition,the active sites and excellent photothermal properties of CoPc itself further improve the integrated photocatalytic activity of CoPc/OCN S-scheme heterojunction.The optimal photocatalytic hydrogen evolution rate of CoPc/OCN S-scheme heterojunction photocatalyst reached 9.56 mmol·g^(-1)·h^(-1),which is 2.69 and 1.23 times higher than that of CN and OCN,respectively.This work provides a valuable design idea and scheme for enhancing the multi-factor co-assisted photocatalytic H_(2) evolution performance. 展开更多
关键词 PHOTOTHERMAL Photocatalytic H_(2)evolution cobalt phthalocyanine Oxygen-doped g-C_(3)N_(4) Sscheme heterojunction
原文传递
“Substituents optimization”and“push effect”dual strategy for design of cobalt phthalocyanine catalyst on oxygen reduction reaction
5
作者 Wenjuan Li Wenmiao Chen +4 位作者 Hongyan Zhuo JinShi Yu Xue Liu Yuexing Zhang Yanli Chen 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第26期80-88,共9页
Molecular metallocycle electrocatalysts like metalloporphyrins and metallophthalocyanines were found to be effective for oxygen reduction reaction(ORR)due to their M-N_(4) active sites and large conjugated elec-tronic... Molecular metallocycle electrocatalysts like metalloporphyrins and metallophthalocyanines were found to be effective for oxygen reduction reaction(ORR)due to their M-N_(4) active sites and large conjugated elec-tronic molecular structures.Herein,the“substituents optimization”strategy combined with“push effect”modification was innovatively employed to target a single Co-N_(4) active site in three substituted phthalo-cyaninato cobalt complexes:tetranitrophthalocyaninato cobalt(CoTNPc),tetra(4-nitrophenoxy)phthalo-cyaninato cobalt(CoTPNPc),and tetraphenoxy phthalocyaninato cobalt(CoTPPc)electrocatalyst,also with 4-phenylpyridine axial coordination on Co-N_(4) unit.Through substituents screening,the half-wave poten-tial(E_(1/2))for ORR increases in the order of CoTPNPc(0.75 V)<CoTPPc(0.80 V)<CoTNPc(0.83 V)along with decreased electron-withdrawing ability of their substituents from-OC_(6) H_(4)-NO_(2),-OC_(6) H_(5) to-NO_(2) in the three cobalt phthalocyanine derivatives.CoTNPc with the weakest electron-withdrawing substituent exhibits the best ORR performance among the three compounds.This is attributed to its higher elec-tron delocalization and lifted HOMO energy level with the lower energy barrier in the rate-determining step relative to the other two compounds,which facilitate the electron transfer and reduction of oxy-gen as evidenced by XPS,UPS,and DRS analysis combined with DFT calculations.Further coordination of 4-phenylpyridine shifts the E_(1/2) up to 0.78,0.82,and 0.85 V for CoTPNPc,CoTPPc,and CoTNPc.DFT calcu-lations demonstrate that the introduction of the electron-donating phenylpyridine ligand into the cobalt phthalocyanines breaks the symmetry of the Co-N_(4) center and also raises the electron density of Co sites,which promotes O_(2) adsorption and improves ORR performance.After comparing the two strategies,the substituents on metallophthalocyanine are more determined by the electroactivity than the axial group,which directly regulates the coordination environment and then the activation barrier of the ORR pro-cess.This work provides theoretical and experimental guidance by two coupling strategies for the design of highly active molecular CoPc-based ORR electrocatalysts in the practical application. 展开更多
关键词 cobalt phthalocyanine Substituent effect Push effect ORR
原文传递
Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density 被引量:2
6
作者 Hongdong Li Yue Pan +6 位作者 Zuochao Wang Yaodong Yu Juan Xiong Haoyang Du Jianping Lai Lei Wang Shouhua Feng 《Nano Research》 SCIE EI CSCD 2022年第4期3056-3064,共9页
Coordination engineering can enhance the activity and stability of the catalyst in heterogeneous catalysis.However,the axial coordination engineering between different groups on the carbon carrier and molecular cataly... Coordination engineering can enhance the activity and stability of the catalyst in heterogeneous catalysis.However,the axial coordination engineering between different groups on the carbon carrier and molecular catalysts in the electrocatalytic carbon dioxide reduction reaction(CO_(2)RR)has been studied rarely.Through coordination engineering strategy,a series of amino(NH_(2)),hydroxyl(OH),and carboxyl(COOH)groups functionalized carbon nanotubes(CNT)immobilized cobalt phthalocyanine(CoPc)catalysts are designed.Compared with no groups,OH groups and COOH groups,NH_(2)groups can effectively change the coordination environment of the central metal Co,thereby significantly increasing the turnover frequency(TOF)(31.4 s^(-1)at-0.6 V vs.RHE,CoPc/NH_(2)-CNT>CoPc/OH-CNT>CoPc/COOH-CN>CoPc/CNT).In the flow cell,the CoPc/NH_(2)-CNT catalyst has high carbon monoxide(CO)selectivity at high current density(~100%at-225 mA·cm^(-2),~96%at-351 mA·cm^(-2)).Importantly,the CoPc/NH_(2)-CNT catalyst can operate stably for 100 h at 225 mA·cm^(-2).Theoretical calculations reveal that CoPc/NH_(2)-CNT catalyst is beneficial to the formation of^(*)COOH and desorption of^(*)CO,thus promoting CO_(2)RR.This work provides an excellent platform for understanding the effect of coordination engineering on electrocatalytic performance and promotes a way to explore efficient and stable catalysts in other applications. 展开更多
关键词 cobalt phthalocyanine(CoPc) functionalized carbon nanotubes(CNT) coordination engineering highly stable carbon dioxide electroreduction
原文传递
Electron-withdrawing functional ligand promotes CO2 reduction catalysis in single atom catalyst 被引量:3
7
作者 Xinyi Ren Song Liu +9 位作者 Huicong Li Jie Ding Linghui Liu Zhichong Kuang Ling Li Hongbin Yang Fuquan Bai Yanqiang Huang Tao Zhang Bin Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2020年第12期1727-1733,共7页
Electrochemical carbon dioxide reduction reaction (CO2RR) powered by renewable electricity offers an attractive approach to reduce carbon emission and at the same time produce valuable chemicals/fuels.To design effici... Electrochemical carbon dioxide reduction reaction (CO2RR) powered by renewable electricity offers an attractive approach to reduce carbon emission and at the same time produce valuable chemicals/fuels.To design efficient CO2 reduction electrocatalyst,it is important to understand the structure-activity relationship.Herein,we design a series of single Co atoms electrocatalysts with well-defined active sites electronic structures,which exhibit outstanding CO2RR activity with controllable selectivity to CO.Experimental and density functional theory (DFT) calculation studies show that introducing nitro (amino) ligand next to single Co atom catalytic center with electron-withdrawing (electron-donating) capability favors (hinders) CO2 reduction catalysis.This work provides an in-depth understanding of how functional ligand affects the splitting of transition metal 3d electron orbital,thereby changing the electron transfer from transition metal active site to CO2,which is closely related to the Gibbs free energy of the rate-determining step (CO2+e^-+*→*CO2^-). 展开更多
关键词 carbon dioxide reduction electrochemical electron-withdrawing cobalt phthalocyanine SINGLE-ATOM
原文传递
A polyoxometalate based electrochemical sensor for efficient detection of L-cysteine 被引量:1
8
作者 Ming-Yue Chu Jia Jiao +4 位作者 Wei Zhu Xin Yang Ting-Ting Yu Gui-Xin Yang Hui-Yuan Ma 《Tungsten》 EI 2022年第2期138-148,共11页
L-cysteine(L-cys),as an important sulfur-containing amino acid,plays an indispensable role in biological systems.Too low and excessively high ratio of L-cys will cause harm to the function of human organs.Therefore,it... L-cysteine(L-cys),as an important sulfur-containing amino acid,plays an indispensable role in biological systems.Too low and excessively high ratio of L-cys will cause harm to the function of human organs.Therefore,it is very necessary to develop efficient methods to detect it in multifarious samples.This paper has built an electrochemical sensor by combining Keggin-type polyoxometalate(PMo9V3)and cobalt tetrasulfonate(Ⅱ)phthalocyanine(CoTsPc)on indium tin oxide electrodes using the layer-level self-assembly technology for efficiently detection of L-cys.The assembly process and surface morphology of the modified electrode was characterized by ultraviolet–visible spectroscopy,X-ray photoelectron spectroscopy,scanning electron microscope,and atomic force microscopy.The conditions of electro-catalysed oxidation of L-cys were optimized by cyclic voltammetry,and the kinetic electrochemical parameters were also evaluated by electrochemical impedance spectra.Furthermore,the sensing performance of the modified electrode was explored using amperometry.The proposed electrochemical L-cys sensor was found to have superior sensing performance with a range of linear response of 2.5×10^(−7) to 1.7×10^(−4) mol·L^(−1) and 1.7×10^(−4) to 39.5×10^(−4) mol·L^(−1),the detection limit of 1.0×10^(−7) mol·L^(−1)(signal/noise=3),and satisfactory anti-interference ability.Consequently,the fabricated sensor has the potential to be applied in laboratory practices for L-cys deterimination in commercial drinks. 展开更多
关键词 L-CYSTEINE Phosphomolybadate cobalt(II)tetrasulfonate phthalocyanine Electrochemical sensor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部