期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Host plant traits play a crucial role in shaping the composition of epiphytic microbiota in the arid desert,Northwest China
1
作者 ZHANG Jun ZHANG Yuanming ZHANG Qi 《Journal of Arid Land》 SCIE CSCD 2024年第5期699-724,共26页
Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host... Phyllosphere microorganisms are a crucial component of environmental microorganisms,highly influenced by host characteristics,and play a significant role in plant health and productivity.Nonetheless,the impact of host characteristics on shaping phyllosphere microbial communities of plants with different life forms remains ambiguous.Utilizing high-throughput sequencing technology,this study analyzed the diversity and community composition of phyllosphere epiphytic microorganisms(e.g.,bacteria and fungi)of various plant life forms in the hinterland of the Gurbantunggut Desert,Northwest China.Functional annotation of prokaryotic taxa(FAPROTAX)and fungi function guild(FUNGuild)were employed to assess the ecological functions of microorganisms and to investigate the role of stochastic and deterministic processes in shaping phyllosphere microbial communities.Result showed a diverse array of phyllosphere epiphytic microorganisms in the desert plants,with Proteobacteria,Cyanobacteria,and Actinobacteriota dominating bacterial community,while Ascomycota and Basidiomycota were prevalent in fungal community.Comparison across different plant life forms highlighted distinct microbial communities,indicating strong filtering effects by plant characteristics.FAPROTAX prediction identified intracellular parasites(accounting for 27.44%of bacterial community abundance),chemoheterotrophy(10.12%),and phototrophy(17.41%)as the main functions of epiphytic bacteria on leaves of different life form plants.FUNGuild prediction indicated that phyllosphere epiphytic fungi primarily served as Saprotrophs(81.77%),Pathotrophs(17.41%),and Symbiotrophs(0.82%).Co-occurrence network analysis demonstrated a predominance of positive correlations among different microbial taxa.Raup-Crick dissimilarity index analysis revealed that deterministic processes predominantly influenced phyllosphere bacterial and fungal community assembly.Variance partitioning analysis and random forest modeling suggested that plant leaf functional traits significantly impacted both bacterial and fungal community composition,with fungal community composition showing a closer association with leaf nutrients and physiology compared with bacterial community composition.The distinct responses of bacterial and fungal communities to plant traits were attributed to the differing properties of bacteria and fungi,such as bacteria having higher potential dispersal rates and broader ecological niches than fungi.Overall,the results indicate that phyllosphere bacterial and fungal communities undergo similar community assembly processes,with fungi being more influenced by plant characteristics than bacteria.These findings offer novel insights into the ecology of phyllosphere microbial communities of desert plants. 展开更多
关键词 phyllosphere epiphytic bacteria phyllosphere epiphytic fungi community structure community diversity functional diversity plant life form plant functional traits
下载PDF
Plant-associated fungal communities in the light of meta’omics 被引量:7
2
作者 Derek Peršoh 《Fungal Diversity》 SCIE 2015年第6期1-25,共25页
Approaches for the cultivation-independent analysis of microbial communities are summarized as meta’omics,which predominantly includes metagenomic,-transcriptomic,-proteomic and-metabolomic studies.These have shown t... Approaches for the cultivation-independent analysis of microbial communities are summarized as meta’omics,which predominantly includes metagenomic,-transcriptomic,-proteomic and-metabolomic studies.These have shown that endophytic,root-associated and soil fungal communities are strongly shaped by associated plant species.The impact of plant identity on the composition of its litterssociated fungal community remains to be disentangled from the impact of litter chemistry.The composition of the plant community also shapes the fungal community.Most strikingly,adjacent plant species may share mycorrhizal symbionts even if the plants usually have different types of mycorrhizal fungi associated with them(ectomycorrhizal,ericoid and arbuscular mycorrhizal fungi).Environmental parameters weakly explain fungal community composition globally,and their effect is inconsistent at local and regional scales.Decrease in similarity among communities with increasing distance(i.e.distance decay)has been reported from local to global scales.This pattern is only exceptionally caused by spatial dispersal limitation of fungal propagules,but mostly due to the inability of the fungi to establish at the particular locality(i.e.environmental filtering or competitive exclusion).Fungal communities usually undergo pronounced seasonal changes and also differ between consecutive years.This indicates that development of the communities is usually not solely cyclic.Meta’omic studies challenge the classical view of plant litter decomposition.They show that mycorrhizal and(previously)endophytic fungi may be involved in plant litter decomposition and only partly support the idea of a succession from an Ascomycota to a Basidiomycota-dominated community.Furthermore,vertical separation of saprotrophic and mycorrhizal species in soil and sequential degradation from easily accessible to‘recalcitrant’plant compounds,such as lignin,can probably not be generalized.The current models of litter decomposition may therefore have to be eventually refined for certain ecosystems and environmental conditions.To gain deeper insights into fungal ecology,a meta’omic study design is outlined which focuses on environmental processes,because fungal communities are usually taxonomically diverse,but functionally redundant.This approach would initially identify dynamics of chemical shifts in the host and/or substrate by metametabolomics.Detected shifts would be subsequently linked to microbial activity by correlation with metatranscriptomic and/or metaproteomic data.A holistic trait-based approach might finally identify factors shaping taxonomic composition in communities against the dynamics of the environmental process(es)they are involved in. 展开更多
关键词 Meta’omics Metaomics Fungal community Metagenomics METAPROTEOMICS METATRANSCRIPTOMICS Metametabolomics phyllosphere fungi Endophytic fungi Litter decomposition Decomposer fungi Root-associated fungi Arbuscular mycorrhiza ECTOMYCORRHIZA Ericoid mycorrhiza Soil fungi Functional diversity Environmental processes Distance decay Environmental filtering Saisonality Temporal shift Fungal traits
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部