期刊文献+
共找到3,732篇文章
< 1 2 187 >
每页显示 20 50 100
Temperature dependence of mechanical properties and damage evolution of hot dry rocks under rapid cooling
1
作者 Longjun Dong Yihan Zhang +2 位作者 Lichang Wang Lu Wang Shen Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期645-660,共16页
Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoust... Understanding the differences in mechanical properties and damage characteristics of granitoid under high temperatures is crucial for exploring deep geothermal resources.This study analyzes the evolution of the acoustic emission(AE)characteristics and mechanical parameters of granodiorite and granite after heating and water cooling by uniaxial compression and variable-angle shear tests under different temperature gradients.We identify their changes in mesostructure and mineral composition with electron probe microanalysis and scanning electron microscopy.Results show that these two hot dry rocks have similar diagenetic minerals and microstructure,but show significantly different mechanical and acoustic characteristics,and even opposing evolution trends in a certain temperature range.At the temperatures ranging from 100℃to 500℃,the compressive and shear mechanical properties of granodiorite switch repeatedly between weakening and strengthening,and those of granite show a continuous weakening trend.At 600℃,both rocks exhibit a deterioration of mechanical properties.The damage mode of granite is characterized by initiating at low stress,exponential evolutionary activity,and intensified energy release.In contrast,granodiorite exhibits the characteristics of initiating at high stress,volatile evolutionary activity,and intermittent energy release,due to its more stable microstructure and fewer thermal defects compared to granite.As the temperature increases,the initiation and propagation of secondary cracks in granodiorite are suppressed to a certain extent,and the seismicity and brittleness are enhanced.The subtle differences in grain size,microscopic heterogeneity,and mineral composition of the two hot dry rocks determine the different acoustic-mechanical characteristics under heating and cooling,and the evolution trends with temperature.These findings are of great significance for the scientific and efficient construction of rock mass engineering by rationally utilizing different rock strata properties. 展开更多
关键词 Hot dry rock Acoustic emission mechanical properties High temperature DAMAGE
下载PDF
Investigation on mechanical properties regulation of rock-like specimens based on 3D printing and similarity quantification
2
作者 Duanyang Zhuang Zexu Ning +3 位作者 Yunmin Chen Jinlong Li Qingdong Li Wenjie Xu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第5期573-585,共13页
3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properti... 3D printing is widely adopted to quickly produce rock mass models with complex structures in batches,improving the consistency and repeatability of physical modeling.It is necessary to regulate the mechanical properties of 3D-printed specimens to make them proportionally similar to natural rocks.This study investigates mechanical properties of 3D-printed rock analogues prepared by furan resin-bonded silica sand particles.The mechanical property regulation of 3D-printed specimens is realized through quantifying its similarity to sandstone,so that analogous deformation characteristics and failure mode are acquired.Considering similarity conversion,uniaxial compressive strength,cohesion and stress–strain relationship curve of 3D-printed specimen are similar to those of sandstone.In the study ranges,the strength of 3D-printed specimen is positively correlated with the additive content,negatively correlated with the sand particle size,and first increases then decreases with the increase of curing temperature.The regulation scheme with optimal similarity quantification index,that is the sand type of 70/140,additive content of 2.5‰and curing temperature of 81.6℃,is determined for preparing 3D-printed sandstone analogues and models.The effectiveness of mechanical property regulation is proved through uniaxial compression contrast tests.This study provides a reference for preparing rock-like specimens and engineering models using 3D printing technology. 展开更多
关键词 3D printing mechanical property regulation Similarity quantification rock analogue SandSTONE
下载PDF
Mechanical properties and energy evolutions of burst-prone coal samples with holes and fillings
3
作者 Yukai Fu Yongzheng Wu +3 位作者 Junchen Li Penghe Zhou Zhuoyue Sun Jie He 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第3期176-189,共14页
During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadwa... During the mining process of impact-prone coal seams,drilling pressure relief can reduce the impact propensity of the coal seam,but it also reduces the integrity and strength of the coal mass at the side of the roadway.Therefore,studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks.To achieve this aim,seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine.Besides,the stress–strain curves,acoustic emission signals,DIC strain fields and other data were collected during the experiments.Furthermore,the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed.The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one,and the decline is positively corelated to the diameter of the drilled hole.After hole filling,the strain concentration degree around the drilled hole is lowered to a certain degree,and polyurethane filling has a more remarkable effect than cement filling.Meanwhile,hole filling can enhance the strength and deformation resistance of coal.Hole drilling can accelerate the release of accumulated elastic strain energy,turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones,whereas hole filling can reduce the intensity of energy release.The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes.Moreover,the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body. 展开更多
关键词 rock mechanics Coal mechanical properties Hole filling Energy evolution
下载PDF
Mechanical and hydraulic properties of fault rocks under multi‑stage cyclic loading and unloading 被引量:1
4
作者 Wentao Hou Dan Ma +3 位作者 Qiang Li Jixiong Zhang Yong Liu Chenyao Zhou 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期151-170,共20页
The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock durin... The rock mass in fault zones is frequently subjected to cyclic loading and unloading during deep resource exploitation and tunnel excavation.Research on the mechanical and hydraulic characteristics of fault rock during the cyclic loading and unloading is of great signifcance for revealing the formation mechanism of water-conducting pathways in fault and preventing water inrush disasters.In this study,the mechanical and seepage tests of fault rock under the multi-stage cyclic loading and unloading of axial compression were carried out by using the fuid–solid coupling triaxial experimental device.The hysteresis loop of the stress–strain curve,peak strain rate,secant Young's modulus,and permeability of fault rock were obtained,and the evolution law of the dissipated energy of fault rock with the cyclic number of load and unloading was discussed.The experimental results show that with an increase in the cyclic number of loading and unloading,several changes occur.The hysteresis loop of the stress–strain curve of the fault rock shifts towards higher levels of strain.Additionally,both the peak strain rate and the secant Young's modulus of the fault rock increase,resulting in an increase in the secant Young's modulus of the fault rock mass.However,the growth rate of the secant Young's modulus gradually slows down with the increase of cyclic number of loading and unloading.The permeability evolution of fault rock under the multi-stage cyclic loading and unloading of axial compression can be divided into three stages:steady increase stage,cyclic decrease stage,and rapid increase stage.Besides,the calculation model of dissipated energy of fault rock considering the efective stress was established.The calculation results show that the relationship between the dissipated energy of fault rock and the cyclic number of loading and unloading conforms to an exponential function. 展开更多
关键词 Multi-stage cyclic loading and unloading Fault rocks mechanical properties Hydraulic properties Energy dissipation
下载PDF
Effects of seepage pressure on the mechanical behaviors and microstructure of sandstone 被引量:1
5
作者 Xuewei Liu Juxiang Chen +3 位作者 Bin Liu Sai Wang Quansheng Liu Jin Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2033-2051,共19页
Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressur... Surrounding rocks of underground engineering are subjected to long-term seepage pressure,which can deteriorate the mechanical properties and cause serious disasters.In order to understand the impact of seepage pressure on the mechanical property of sandstone,uniaxial compression tests,P-wave velocity measurements,and nuclear magnetic resonance(NMR)tests were conducted on saturated sandstone samples with varied seepage pressures(i.e.0 MPa,3 MPa,4 MPa,5 MPa,6 MPa,7 MPa).The results demonstrate that the mechanical parameters(uniaxial compressive strength,peak strain,elastic modulus,and brittleness index),total energy,elastic strain energy,as well as elastic strain energy ratio,decrease with increasing seepage pressure,while the dissipation energy and dissipation energy ratio increase.Moreover,as seepage pressure increases,the micro-pores gradually transform into meso-pores and macro-pores.This increases the cumulative porosity of sandstone and decreases P-wave velocity.The numerical results indicate that as seepage pressure rises,the number of tensile cracks increases progressively,the angle range of microcracks is basically from 50-120to 80-100,and as a result,the failure mode transforms to the tensile-shear mixed failure mode.Finally,the effects of seepage pressure on mechanical properties were discussed.The results show that decrease in the effective stress and cohesion under the action of seepage pressure could lead to deterioration of strength behaviors of sandstone. 展开更多
关键词 rock mechanics mechanical property Seepage pressure Numerical simulation MICROCRACKS
下载PDF
Preparation of Manganese Oxide and Its Adsorption Properties
6
作者 贺跃 王海峰 +4 位作者 YANG Pan WANG Song CHEN Xiaoliang YANG Chunyuan 王家伟 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第4期1031-1040,共10页
The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of ... The in-situ oxidation of manganese sulfate solution with H2O_(2),sodium hypochlorite,potassium permanganate and oxygen as oxidants was investigated by means of SEM,EDS,XRD,BET and infrared analysis,and the effects of different oxidants on the morphology,phase composition,surface properties and specific surface area of manganese oxides were investigated.The experimental results show that the diameter of manganese oxide particles prepared with H_(2)O_(2)is the smallest,about 50 nm,and the specific surface area is the largest,63.8764 m^(2)/g.It has the advantages of abundant surface hydroxyl groups,no introduction of other impurities and large adsorption potential.It is most suitable to be used as an oxidant for oxidizing manganese sulfate solution to prepare manganese oxide by in-situ oxidation.Nano manganese oxide prepard by H_(2)O_(2)in-situ oxidation method is used as adsorbent to adsorb cobalt and nickel impurities in manganese sulfate.When the reaction pH is 6,the reaction time is 30min and the amount of adsorbent is 1.0 g,the adsorption rates of cobalt and nickel impurities in 100ml manganese sulfate solution are 97.59%and 97.67%,respectively.The residual amounts of cobalt and nickel meet the industrial process standard of first-class products(Co,Ni w/%≤0.005)of high-purity manganese sulfate(Hg/t4823-2015)for batteries.The study plays a guiding role in the preparation and regulation of manganese oxide,and provides a new method with high efficiency,purity and adsorbent availability for the preparation of high-purity manganese sulfate solution. 展开更多
关键词 manganese oxide in situ oxidation ADSORBENT regulation mechanism physical chemical properties
下载PDF
Mechanical Behavior of Panels Reinforced with Orthogonal Plant Fabrics: Experimental and Numerical Assessment
7
作者 Martha L.Sánchez G.Capote 《Journal of Renewable Materials》 EI CAS 2024年第10期1791-1810,共20页
The construction sector is one of the main sources of pollution,due to high energy consumption and the toxic substances generated during the processing and use of traditional materials.The production of cement,steel,a... The construction sector is one of the main sources of pollution,due to high energy consumption and the toxic substances generated during the processing and use of traditional materials.The production of cement,steel,and other conventional materials impacts both ecosystems and human health,increasing the demand for ecological and biodegradable alternatives.In this paper,we analyze the properties of panels made from a combination of plant fibers and castor oil resin,analyzing the viability of their use as construction material.For the research,orthogonal fabrics made with waste plant fibers supplied by a company that deals with the manufacture of furniture and craft products were used.These fabrics were made with strips of plant fibers of the Calamus rotang,Bambusa vulgaris,Heteropsis flexuosa,and Salix viminalis species.To improve their compatibility with the castor oil resin,a cold argon plasma treatment was applied.The effect of the treatment on the properties of the fibers and the panels was analyzed.The density,water absorption capacity,and swelling percentage were evaluated.Tensile,compression,static bending,and linear buckling tests were carried out.The study found that panels made with treated fiber fabrics exhibited a reduction of approximately 10%in absorption capacity and up to 35%in swelling percentage values.Panels made with Bambusa vulgaris fabrics exhibited the highest strength and stiffness values.Numerical models were constructed using commercial finite element software.When comparing the numerical results with the experimental ones,differences of less than 15%were seen,demonstrating that the models allow adequately predicting the analyzed properties.On comparing the values obtained with the characteristic values of oriented strand board,the results suggest that panels made with unconventional materials could replace commercial panels traditionally made with wood-based fibers and particles and other composite materials in several applications in the construction industry. 展开更多
关键词 Unconventional materials nonstructural panels plantfibers surface treatment physical properties mechanical properties
下载PDF
Microscopic damage and dynamic mechanical properties of rock under freeze-thaw environment 被引量:25
8
作者 周科平 李斌 +2 位作者 李杰林 邓红卫 宾峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1254-1261,共8页
For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were c... For understanding the rock microscopic damage and dynamic mechanical properties subjected to recurrent freeze-thaw cycles, experiments for five groups of homogeneous sandstone under different freeze-thaw cycles were conducted. After freezethaw, nuclear magnetic resonance(NMR) tests and impact loading tests were carried out, from which microscopic damage characteristics of sandstone and dynamic mechanical parameters were obtained. The results indicate that the porosity increases with the increase of cycle number, the rate of porosity growth descends at the beginning of freeze-thaw, yet accelerates after a certain number of cycles. The proportion of pores with different sizes changes dynamically and the multi-scale distribution of pores tends to develop on pore structure with the continuing impact of freeze-thaw and thawing. Dynamic compressive stress-strain curve of sandstone undergoing freeze-thaw can be divided into four phases, and the phase of compaction is inconspicuous compared with the static curve. Elastic modulus and dynamic peak intensity of sandstone gradually decrease with freeze-thaw cycles, while peak strain increases. The higher the porosity is, the more serious the degradation of dynamic intensity is. The porosity is of a polynomial relationship with the dynamic peak intensity. 展开更多
关键词 rock freeze-thaw cycle nuclear magnetic resonance(NMR) pore structure dynamic mechanical property dynamic compression stress-strain curve
下载PDF
Physical and Mechanical Properties of Coral Sand in the Nansha Islands 被引量:16
9
作者 于红兵 孙宗勋 唐诚 《Marine Science Bulletin》 CAS 2006年第2期31-39,共9页
Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanica... Coral sand is a unique material developed in the tropical ocean environment, which is mainly composed of coral and other marine organism debris, with the CaCO3 content up to 96 %. It has special physical and mechanical properties due to its composition, structure and sedimentary environment. In this contribution, we discuss its specific gravity, porosity ratio compressibility, crushing, shearing and intensity for coral sand samples from the Nansha islands based on laboratory mechanical tests. Our results show distinct high porosity ratio, high friction angle and low intensity as compared with the quartz sand. We believe that grain crushing is the main factor that influences the deformation and strength of coral sand. Comprehensive study on the physical and mechanical properties of coral sands is significant in providing reliable scientific parameters to construction on coral islet, and thus avoids accidents in construction. 展开更多
关键词 Nansha Islands coral sand physical and mechanical properties
下载PDF
Mechanical and acoustic emission characteristics of anhydrite rock under freeze-thaw cycles 被引量:2
10
作者 ZHANG Chi JIN Xiao-guang +1 位作者 HOU Chao HE Jie 《Journal of Mountain Science》 SCIE CSCD 2023年第1期227-241,共15页
To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magneti... To study the damage mechanisms of anhydrite rock under freeze-thaw cycles, the physicalmechanical properties and the microcracking activities of anhydrite rock were investigated through mass variation, nuclear magnetic resonance, scanning electron microscope tests, and uniaxial compression combined with acoustic emission(AE) tests. Results show that with the increase of freeze-thaw processes,the mass, uniaxial compression strength, and elastic modulus of the anhydrite specimens decrease while the porosity and plasticity characteristics increase.For example, after 120 cycles, the uniaxial compression strength and elastic modulus decrease by 46.54% and 60.16%, and the porosity increase by 75%. Combined with the evolution trend of stressstrain curves and the detected events, three stages were labeled to investigate the AE characteristics in freeze-thaw weathered anhydrite rock. It is found that with the increase of freeze-thaw cycles, the proportions of AE counts in stage Ⅰ and stage Ⅱ show a decaying exponential trend. Contrarily, the proportion of AE counts in stage Ⅲ displays an exponential ascending trend. Meanwhile, as the freeze-thaw cycles increase, the low-frequency AE signals increase while the intermediate-frequency AE signals decrease. After 120 cycles, the proportion of low-frequency AE signals increases by 168.95%, and the proportion of intermediate-frequency AE signals reduces by 81.14%. It is concluded that the microtensile cracking events occupy a dominant position during the loading process. With the increase of freeze-thaw cycles, the b value of samples decreases.After 120 cycles, b value decreases by 27.2%, which means that the proportion of cracking events in rocks with small amplitude decreases. Finally, it is proposed that the freeze-thaw damage mechanism of anhydrite is also characterized by the water chemical softening effect. 展开更多
关键词 Freeze-thaw cycles Anhydrite rock physical and mechanical properties AE characteristics Damage mechanism
下载PDF
Thermo-Physical and Mechanical Properties of Al Hashimiyya Basaltic Rocks, Jordan
11
作者 Sana’a Al-Zyoud 《International Journal of Geosciences》 2019年第2期193-208,共16页
Geothermal exploration in northern Jordan is in juvenile phase. North eastern basaltic desert is expected to host, with other rock formations, a shallow geothermal field. For efficient geothermal potential evaluation,... Geothermal exploration in northern Jordan is in juvenile phase. North eastern basaltic desert is expected to host, with other rock formations, a shallow geothermal field. For efficient geothermal potential evaluation, a complete understanding of thermo-physical properties of deep reservoir rocks is of utmost importance. Due to the complex technical thermo-physical evaluations of basalts in depth, surficial basalts extending to the west were evaluated. Accordingly, six basaltic sub-flows from Al Hashimiyya were examined into their thermo-physical and mechanical properties. The flows represent the western extinction of large olivine basalt eruption. Different properties were evaluated for oven dried samples: thermal conductivity, permeability, porosity, density and specific heat capacity. In addition, basalts mechanical properties were examined: compressional wave velocity, unconfined compressive strength, indirect tensile strength and point load tests. The results were correlated in proportional patterns. They indicated that thermal conductivity of the studied basalts is dependent on porosity and permeability in parallel with mineral composition. It’s found that mechanical properties are controlled by porosity and permeability, too. The studied basalt properties exhibit slight deviation from the continental basalts thermo-physical and mechanical properties reported in the region. Thermal conductivity ranges between 1.89 and 1.32 W·m-1·K-1, whereas the porosity and permeability averages at 10.64% and 9.75899E-15 m2, respectively. Additionally, unconfined compressive strength averages at 104.9 Mpa and it’s almost 20 times higher than indirect tensile strength which ranges from 8.73 to 2.21 Mpa. As the samples were tested under laboratory conditions, in situ conditions will not be reflected by such values. At greater depth, temperature, pressure and hydrothermal activities will certainly affect rock properties. Micro fractures, whether it will be filled or not, will affect basalts properties, too. The results of this work will be used to develop a comprehensive thermo-physico-mechanical model, and improve the ability to predict rock properties at greater depths of Jordanian basalts. 展开更多
关键词 Thermo-physical properties mechanical properties BASALTS AL Hashimiyya JORDAN
下载PDF
Selection and thermal physical characteristics analysis of in-situ condition preserved coring lunar rock simulant in extreme environment
12
作者 Haichun Hao Mingzhong Gao +5 位作者 Cunbao Li Xuan Wang Yan Wu Zheng Gao Wen Yu Xuemin Zhou 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第11期1411-1424,共14页
With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volat... With the increasing scarcity of Earth’s resources and the development of space science and technology,the exploration, development, and utilization of deep space-specific material resources(minerals, water ice, volatile compounds, etc.) are not only important to supplement the resources and reserves on Earth but also provide a material foundation for establishing extraterrestrial research bases. To achieve large depth in-situ condition-preserved coring(ICP-Coring) in the extreme lunar environment, first, lunar rock simulant was selected(SZU-1), which has a material composition, element distribution, and physical and mechanical properties that are approximately equivalent to those of lunar mare basalt. Second, the influence of the lunar-based in-situ environment on the phase, microstructure, and thermal physical properties(specific heat capacity, thermal conductivity, thermal diffusivity, and thermal expansion coefficient)of SZU-1 was explored and compared with the measured lunar rock data. It was found that in an air atmosphere, low temperature has a more pronounced effect on the relative content of olivine than other temperatures, while in a vacuum atmosphere, the relative contents of olivine and anorthite are significantly affected only at temperatures of approximately-20 and 200 ℃. When the vacuum level is less than100 Pa, the contribution of air conduction can be almost neglected, whereas it becomes dominant above this threshold. Additionally, as the testing temperature increases, the surface of SZU-1 exhibits increased microcracking, fracture opening, and unevenness, while the specific heat capacity, thermal conductivity,and thermal expansion coefficient show nonlinear increases. Conversely, the thermal diffusivity exhibits a nonlinear decreasing trend. The relationship between thermal conductivity, thermal diffusivity, and temperature can be effectively described by an exponential function(R^(2)>0.98). The research results are consistent with previous studies on real lunar rocks. These research findings are expected to be applied in the development of the test and analysis systems of ICP-Coring in a lunar environment and the exploration of the mechanism of machine-rock interaction in the in-situ drilling and coring process. 展开更多
关键词 Lunar-based Lunar rock simulant Extreme environment Thermal physical properties
下载PDF
Wood Physical and Mechanical Properties of Populus × canadensis Moench and Populus ×euramericana(Dode) Guinier cv. Gelrica
13
作者 张英杰 冯德君 窦延光 《Agricultural Science & Technology》 CAS 2017年第12期2532-2535,共4页
The physical-mechanical properties of Populus x canadensis Moench and Populus x euramericana (Dode) Guinier cv. Gelrica were studied to provide theoret- ical and scientific bases for the directional breeding and eff... The physical-mechanical properties of Populus x canadensis Moench and Populus x euramericana (Dode) Guinier cv. Gelrica were studied to provide theoret- ical and scientific bases for the directional breeding and efficient use of artificial forests with P. canadensis and P. euramericana Gelrica. The results showed the air-dried density, basic density of P. canadensis were 0.468 g/cm3 and 0.372 g/cm3, respectively; the shrinkage coefficient of radial, tangential and volume were 0.133%, 0.270% and 0.553%, respectively;the modulus of elasticity in static bending, the bending strength and the compressive strength parallel to grain were 9 302.99 MPa, 79.69 MPa and 40.32 Mpa, respectively. As for the P. euramericana Gelrica, the air-dried density, basic densitywere 0.453 and 0.355 g/cm3, respectively; the shrink- age coefficient of radial, tangential and volume were 0.205%, 0.304% and 0.554%, respectively; the modulus of elasticity in static bending, the bending strength and the compressive strength parallel to grain were 9 014.44, 55.87 and 33.09 Mpa respectively. Comprehensive analysis of the indicators showed that the properties of P. canadensis were better than those of P.euramericana Gelrica. 展开更多
关键词 Populus x canadensis Moench Populus x euramericana (Dode) Guiniercv. Ge/rica physical properties mechanical properties
下载PDF
Influence of Plastic and Coconut Shell (Cocos nucifera L.) on the Physico-Mechanical Properties of the 8/6 Composite Rafter
14
作者 Fofana Messorma Souleymane Jolissaint Obre Sery Paul +1 位作者 Emeruwa Edjikémé Yomanfo Assoumou Joseph 《Open Journal of Composite Materials》 2023年第4期57-68,共12页
In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construc... In this paper, the authors aim to propose the use of waste plastics as a binder in a coconut shell reinforcement for the development of an 8/6 size composite rafter to replace the natural 8/6 size backbone in construction. Following a study into the choice of the best proportions, a total of 30 size 8/6 composite rafters with different proportions of 20%, 25%, 30%, 35%, 40% and 50% plastic content were developed. All the 8/6 composite rafters were subjected to mechanical (3-point bending strength and Monnin hardness) and physical (bulk density and water absorption) characterization analyses. The results show that flexural strength increases from 27.56 MPa to 33.30 MPa for proportions ranging from 20% to 35% plastic content. Above 35% plastic, the strength drops to 19.60 MPa for a 50% plastic content. Similarly, the Monnin hardness drops from 9 mm to 5 mm when the plastic content varies from 20 to 50%. As for the results of the physical characterisation, the values obtained for apparent density vary from 0.89 to 1 for proportions varying from 20% to 35% plastic content and drop to 0.94 for 50% plastic content. As for water absorption, values drop from 6.82% to 2.45% when the plastic content increases from 20% to 50%. These mechanical strengths stabilise at 35% plastic content. The development of an 8/6 chevron composite material based on plastic and coconut shell could therefore be a way of recovering waste and solving the problem of deforestation. 展开更多
关键词 Plastic Waste Coconut Shell RECOVERY mechanical and physical properties 8/6 Composite Chevron
下载PDF
Characteristics of the difference and change in the comprehensive physical properties of rocks 被引量:7
15
作者 于萍 冯永革 赵鸿儒 《地震学报》 CSCD 北大核心 2001年第5期541-547,共7页
Based on the relationship between rock physical properties and atomic structures of chemical elements, this paper dissertates the characteristics between the difference and change in the comprehensive physical propert... Based on the relationship between rock physical properties and atomic structures of chemical elements, this paper dissertates the characteristics between the difference and change in the comprehensive physical properties of rocks, such as density, elasticity, electrical property and radioactivity, etc. The examples in this paper show that the change of the comprehensive physical parameters of rocks reflects the change of atoms, molecules, minerals and their constitutions in rocks, and there are some correlations between these parameters. 展开更多
关键词 岩石综合物性参数 弹性 密度 电阻率 放射性 相关性
下载PDF
Effect of molasses binder on the physical and mechanical properties 被引量:9
16
作者 Anand Babu Kotta Anshuman Patra +1 位作者 Mithilesh Kumar Swapan Kumar Karak 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2019年第1期41-51,共11页
Molasses was used as an alternative binder to the bentonite binder. The change in moisture absorption by pellets prepared with different iron ores and different molasses contents were investigated. Iron ore properties... Molasses was used as an alternative binder to the bentonite binder. The change in moisture absorption by pellets prepared with different iron ores and different molasses contents were investigated. Iron ore properties exerted the major effect on pellet behavior and final pellet quality. The absorbed moisture content of pellets prepared without binder, bentonite-added pellets, and molasses-added pellets were in the range of 7.72%–9.95%, 9.62%–10.84%, and 6.14%-6.69%, respectively. The wet pellet compressive strength of molasses-added pellets(43–230 N/pellet) was superior to that of bentonite-added pellets(9.47–11.92 N/pellet). The compressive strength of dried molasses-modified pellets increased to 222–394 N/pellet, which is currently the highest value achieved for dried pellets. 展开更多
关键词 IRON ORE MOLASSES BINDER MOISTURE absorption PELLET strength physical and mechanical properties
下载PDF
Effects of thermal treatment on physical and mechanical characteristics of coal rock 被引量:15
17
作者 YIN Tu-bing WANG Pin +2 位作者 LI Xi-bing SHU Rong-hua YE Zhou-yuan 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第9期2336-2345,共10页
To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB)... To study the physical and mechanical properties of coal rock after treatment at different temperatures under impact loading, dynamic compression experiments were conducted by using a split Hopkinson pressure bar(SHPB). The stress–strain curves of specimens under impact loading were obtained, and then four indexes affected by temperature were analyzed in the experiment: the longitudinal wave velocity, elastic modulus, peak stress and peak strain. Among these indexes, the elastic modulus was utilized to express the specimens' damage characteristics. The results show that the stress–strain curves under impact loading lack the stage of micro-fissure closure and the slope of the elastic deformation stage is higher than that under static loading. Due to the dynamic loading effect, the peak stress increases while peak strain decreases. The dynamic mechanical properties of coal rock show obvious temperature effects. The longitudinal wave velocity, elastic modulus and peak stress all decrease to different extents with increasing temperature, while the peak strain increases continuously. During the whole heating process, the thermal damage value continues to increase linearly, which indicates that the internal structure of coal rock is gradually damaged by high temperature. 展开更多
关键词 rock mechanical property split Hopkinson pressure bar (SHPB) high temperature coal rock dynamic mechanical property
下载PDF
Review of the influence of freeze-thaw cycles on the physical and mechanical properties of soil 被引量:9
18
作者 Dan Chang JianKun Liu 《Research in Cold and Arid Regions》 CSCD 2013年第4期457-460,共4页
Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-th... Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles. 展开更多
关键词 freeze-thaw cycles physical properties mechanical properties significance and interaction
下载PDF
Effects of Polypropylene Fibers on the Physical and Mechanical Properties of Recycled Aggregate Concrete 被引量:4
19
作者 Pierre Matar Gérard-Philippe Zéhil 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第6期1327-1344,共18页
The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete ag... The viability of using polypropylene fibers(PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete aggregate(RCA). Mixes with different RCA replacement ratios and different PPF content were designed and tested. The test results showed that the addition of PPF did not change significantly the compressive strength and the density of the concrete, but slightly decreased its modulus of elasticity and Poisson’s ratio. The drop in the splitting tensile strength and the flexural strength due to RCA inclusions was to a large extent compensated by the PPF addition. The water absorption decreased and the percent voids increased with increased PPF addition. Correlations between the RCA content, the PPF content and the properties of concrete were studied. Useful regression models were proposed to predict the properties of concrete in relevant ranges of RCA and PPF content. 展开更多
关键词 CONCRETE recycled aggregate fiber reinforcement physical properties mechanical properties
下载PDF
Effects of sintering atmosphere on the physical and mechanical properties of modified BOF slag glass 被引量:2
20
作者 Wen-bin Dai Yu Li +2 位作者 Da-qiang Cang Yuan-yuan Zhou Yong Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2014年第5期494-502,共9页
This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melti... This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000℃ in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure. 展开更多
关键词 glass ceramics SLAGS SINTERING iron oxides physical properties mechanical properties
下载PDF
上一页 1 2 187 下一页 到第
使用帮助 返回顶部