期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mechatronic Modeling and Domain Transformation of Multi-physics Systems
1
作者 Clarence W.DE SILVA 《Instrumentation》 2021年第1期14-28,共15页
The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in th... The enhanced definition of Mechatronics involves the four underlying characteristics of integrated,unified,unique,and systematic approaches.In this realm,Mechatronics is not limited to electro-mechanical systems,in the multi-physics sense,but involves other physical domains such as fluid and thermal.This paper summarizes the mechatronic approach to modeling.Linear graphs facilitate the development of state-space models of mechatronic systems,through this approach.The use of linear graphs in mechatronic modeling is outlined and an illustrative example of sound system modeling is given.Both time-domain and frequency-domain approaches are presented for the use of linear graphs.A mechatronic model of a multi-physics system may be simplified by converting all the physical domains into an equivalent single-domain system that is entirely in the output domain of the system.This approach of converting(transforming)physical domains is presented.An illustrative example of a pressure-controlled hydraulic actuator system that operates a mechanical load is given. 展开更多
关键词 Mechatronic Modeling Multi-physics Systems Integrated Unified Unique and Systematic Approach Linear Graphs physical domain Conversion/Transformation
下载PDF
Prediction of lattice thermal conductivity with two-stage interpretable machine learning
2
作者 胡锦龙 左钰婷 +10 位作者 郝昱州 舒国钰 王洋 冯敏轩 李雪洁 王晓莹 孙军 丁向东 高志斌 朱桂妹 李保文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期11-18,共8页
Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have le... Thermoelectric and thermal materials are essential in achieving carbon neutrality. However, the high cost of lattice thermal conductivity calculations and the limited applicability of classical physical models have led to the inefficient development of thermoelectric materials. In this study, we proposed a two-stage machine learning framework with physical interpretability incorporating domain knowledge to calculate high/low thermal conductivity rapidly. Specifically, crystal graph convolutional neural network(CGCNN) is constructed to predict the fundamental physical parameters related to lattice thermal conductivity. Based on the above physical parameters, an interpretable machine learning model–sure independence screening and sparsifying operator(SISSO), is trained to predict the lattice thermal conductivity. We have predicted the lattice thermal conductivity of all available materials in the open quantum materials database(OQMD)(https://www.oqmd.org/). The proposed approach guides the next step of searching for materials with ultra-high or ultralow lattice thermal conductivity and promotes the development of new thermal insulation materials and thermoelectric materials. 展开更多
关键词 low lattice thermal conductivity interpretable machine learning thermoelectric materials physical domain knowledge
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部