期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Thermoelastic stresses in SiC single crystals grown by the physical yapor transport method 被引量:1
1
作者 Zibing Zhang Jing Lu +1 位作者 Qisheng Chen V. Prasad 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第1期40-45,共6页
A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. T... A finite element-based thermoelastic anisotropic stress model for hexagonal silicon carbide polytype is developed for the calculation of thermal stresses in SiC crystals grown by the physical vapor transport method. The composite structure of the growing SiC crystal and graphite lid is considered in the model. The thermal expansion match between the crucible lid and SiC crystal is studied for the first time. The influence of thermal stress on the dislocation density and crystal quality is discussed. 展开更多
关键词 Silicon carbide physical vapor transport Thermal stress Thermoelastic Thermal expansion match
下载PDF
Structure and Properties of Nanostructured Vacuum-Deposited Foils of Invar Fe–(35–38 wt%)Ni Alloys 被引量:3
2
作者 V.M.Nadutov A.I.Ustinov +2 位作者 S.A.Demchenkov Ye.O.Svystunov V.S.Skorodzievski 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2015年第11期1079-1086,共8页
The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size ... The process of electron beam vacuum deposition of the Fe-(35-38 wt%)Ni alloys at substrate temperatures Ts from 300 to700 ℃ were used to produce vacuum-deposited foils with the FCC structure, differing by the size of characteristic microstructural elements (grains and subgrains). It was shown that refinement of foil microstructural elements to nanoscale is accompanied by their microhardness increase up to 4-5 GPa. The change of the thermal expansion coefficient (TEC) of the nanostructured (NS) foil of the Fe-35.1Ni alloy within the temperature range from -50 to 150 ℃ has some deviation from that observed for cast Invar alloy of the same composition. It has been found that the main factors affecting the peculiarities of thermal expansion of the NS foil can be related to the presence of small fraction of BCC- phase in them, high level of crystalline lattice microstrains and inhomogeneous magnetic order in FCC- phase. It was shown that as a result of additional thermal treatment of NS foils their invar properties become similar to that observed for cast Invar alloy but mechanical properties remain on the same level. 展开更多
关键词 Fe-Ni alloys Electron beam physical vapor deposition (EBPVD) Nanostructured materials Hardness Thermal expansion Mossbauer spectroscopy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部