We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR...We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.展开更多
In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by con...In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.展开更多
Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This a...Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies.展开更多
This paper proposes a structure combined by baffle and submerged breakwater (abbreviated to SCBSB in the following texts). Such a combined structure is conducive to the water exchange in the harbor, and has strong c...This paper proposes a structure combined by baffle and submerged breakwater (abbreviated to SCBSB in the following texts). Such a combined structure is conducive to the water exchange in the harbor, and has strong capability on wave dissipation. Our paper focuses on the discussion of two typical structures, i.e., the submerged baffle and rectangular breakwater combined with the upper baffle respectively, which are named as SCBSB 1 and SCBSB2 for short. The eigenfunction method corrected by experimental results is used to investigate the wave dissipation characteristics. It shows that the calculated results agree well with the experimental data and the minimum value of the wave transmission coefficient can be obtained when the distance between the front and rear structures is from 1/4 to 1/2 of the incident wave length.展开更多
To address the problems of difficult leveling and poor stability of hill crawler tractors,an attitude adjustment device based on a parallel four-bar mechanism was designed,and the mechanical reasons for the sideslip i...To address the problems of difficult leveling and poor stability of hill crawler tractors,an attitude adjustment device based on a parallel four-bar mechanism was designed,and the mechanical reasons for the sideslip instability of hill crawler tractors were analyzed.On this basis,a posture adjustment mechanism based on a parallel four-bar mechanism was proposed,and the structure of the complete attitude adjustment device was designed.To ensure that this device meets the strength requirements during operation,a mechanical analysis of the key components(active rocker and slave rocker)was carried out to accommodate the load during leveling.Based on ANSYS software,a finite element simulation analysis was used to determine the maximum stress position of the active and slave rockers.Finally,to verify the accuracy of the above simulation analysis results and determine the influence rules of the lateral slope angle,longitudinal slope angle and loading quality on the abovementioned maximum stress,a physical model test bench of the attitude adjustment device was built.An orthogonal regression experiment was carried out with the maximum stresses of the active and slave rockers as the test indices.The experimental data were analyzed by Design-Expert 10 software,and the results show that the order of the primary and secondary factors influencing the maximum stress of the active rocker was the loading mass,lateral slope angle and longitudinal slope angle.The order of the factors influencing the maximum stress of the slave rocker was the longitudinal slope angle,lateral slope angle and loading mass.The active and slave rockers meet the strength requirements.This work provides technical support for the production of hill crawler tractor physical prototypes.展开更多
Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influenci...Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases.展开更多
Phyllite fragments are essential for accumulating and generating talus slope at the toes of hillslopes,however,how they are linked to slope failure remains unknown.This paper reports the directional arrangement of phy...Phyllite fragments are essential for accumulating and generating talus slope at the toes of hillslopes,however,how they are linked to slope failure remains unknown.This paper reports the directional arrangement of phyllite fragments(DAPF)in phyllite talus slope at the eastern margin of the Tibetan Plateau.Field investigation,mathematical statistics and model experiments were performed in order to systematically understand the influencing factors,which include fragment shape,flat ratio,dip angle(α),and fine particle content(c).The results show that the quadrilateral fragmentgenerates a similar imbricate structure more easily than the triangular and rod fragments in the phyllite talus slope.Additionally,the flat phyllite fragments easily accumulate as imbricated structures on the phyllitetalus slope.When the dip angle(α)is in the range of 20°–30°,the minimum orientation ratio(P)is more than 50%,which means thatthe DAPF phenomenon is more obviousin the phyllite talus slope.For the fine particle content(c)at the same dip angle(α),the minimum orientation ratio(P)is 54%,and the minimum orientation ratio(P)correlates positively with the fine particle content(c).Therefore,compared with the homogeneous talusslope,the phyllite talusslopedisplays a special DAPF phenomenon.This study provides a valuable reference and presents novel knowledgefor risk assessment and engineering design against the phyllite talus slope failure mechanism.展开更多
As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This pap...As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This paper makes an in-depth study on double-buoy WEC,by means of the combination of model experiment and numerical simulation.The Response Amplitude Operator(RAO)and energy capture of the double-buoy under constant power take-off(PTO)damping are investigated in the model test,while the average power output and capture width ratio(CWR)are calculated by the numerical simulation to analyze the influence of the wave condition,PTO,and the geometry parameters of the device.The AQWA-Fortran united simulation sy stem,including the secondary developme nt of AQWA software coupled with the flowchart of the Fortran code,models a new dynamic system.Various viscous damping and hydraulic friction from WEC system are measured from the experimental results,and these values are added to the equation of motion.As a result,the energy loss is contained in the final numerical model the by united simulation system.Using the developed numerical model,the optimal period of energy capture is identified.The power capture reaches the maximum value under the outer buoy's natural period.The paper gives the peak value of the energy capture under the linear PTO damping force,and calculates the optimal mass ratio of the device.展开更多
The hydrodynamic lifting force acting on a gate with high head is one of the key factors concerning the safety and reliability of gates. The lifting force is closely related to hydrodynamic pressure, and generally, is...The hydrodynamic lifting force acting on a gate with high head is one of the key factors concerning the safety and reliability of gates. The lifting force is closely related to hydrodynamic pressure, and generally, is obtained through the model test. This work presents a method of numerical simulation based on the VOF method for the flow and FEM for the structure of a gate to investigate this kind of the lifting force. The physical model experiments were conducted about the hydrodynamic pressure and the lifting force to verify the numerical results. The comparisons of those two methods show that the maximum relative error is smaller than 11.40 % and the method presented in this paper is feasible and could be used in the designs of hydropower projects.展开更多
Surface vortex behavior in front of the tunnel intake was investigated in this paper.The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface'(CSSS).The vortex ...Surface vortex behavior in front of the tunnel intake was investigated in this paper.The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface'(CSSS).The vortex formation and evolution at the tunnel intake were analyzed based on the theory of CSSS considering the effect of circulation.A theory was proposed to explain the surface vortex.The theoretical development was verified by the physical model experiments of Xiluodu hydropower station.The radial velocity and vortex circulation were considered as the main factors that influence the formation and evolution of surface vortex.Finally,an anti-vortex intake configuration was proposed to weaken the air-core vortex in front of the tunnel intakes of the hydraulic structures.展开更多
基金Funded by the National Natural Science Foundation of China(51202304)the China Postdoctoral Science Foundation(2014M552320)+1 种基金Scientific,the Technological Talents’Special Funds of Wanzhou District and Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1401016)the Youth Project of Chongqing Three Gorges College(13QN-20)
文摘We prepared concretes(RC0, RC30, and RC100) with three different mixes. The poresize distribution parameters of RAC were examined by high-precision mercury intrusion method(MIM) and nuclear magnetic resonance(NMR) imaging. A capillary-bundle physical model with random-distribution pores(improved model, IM) was established according to the parameters, and dry-shrinkage strain values were calculated and verified. Results show that in all pore types, capillary pores, and gel pores have the greatest impacts on concrete shrinkage, especially for pores 2.5-50 and 50-100 nm in size. The median radii are 34.2, 31, and 34 nm for RC0, RC30, and RC100, respectively. Moreover, the internal micropore size distribution of RC0 differs from that of RC30 and RC100, and the pore descriptions of MIM and NMR are consistent both in theory and in practice. Compared with the traditional capillary-bundle model, the calculated results of IM have higher accuracy as demonstrated by experimental verifi cation.
基金financial support from the National Key Research and Development Program of China (No.2023YFC2907501)the National Natural Science Foundation of China (No.52374106)the Fundamental Research Funds for the Central Universities (No.2023ZKPYNY01)。
文摘In order to improve rib stability,failure criteria and instability mode of a thick coal seam with inter-band rock layer are analysed in this study.A three-dimensional mechanical model is established for the rib by considering the rock layer.A safety factor is defined foy the rib,and it is observed that the safety factor exhibits a positive correlation with the thickness and strength of the inter-band rock.A calculation method for determining critical parameters of the rock layer is presented to ensure the rib stability.It is revealed that incomplete propagation of the fracture at the hard rock constitutes a fundamental prerequisite for ensuring the rib stability.The influence of the position of the inter-band rock in the coal seam on failure mechanism of the rib was thoroughly investigated by developing a series of physical models for the rib at the face area.The best position for the inter-band rock in the coal seam is at a height of 1.5 m away from the roof line,which tends to provide a good stability state for the rib.For different inter-band rock positions,two ways of controlling rib by increasing supports stiffness and flexible grouting reinforcement are proposed.
基金supported by the National Key R&D Program of China (Grant No.2020YFA0711802).
文摘Integrating liquid CO_(2)phase transition blasting(LCPTB)technology with hydraulic fracturing(HF)methods can help reduce wellbore damage,create multiple radial fractures,and establish a complex fracture network.This approach significantly increases the recovery efficiency of low-permeability oil and gas fields.Accurately calculating the number of fractures caused by LCPTB is necessary to predict production enhancement effects and optimize subsequent HF designs.However,few studies are reported on large-scale physical model experiments in terms of a method for calculating the fracture number.This study analyzed the initiation and propagation of cracks under LCPTB,derived a calculation formula for crack propagation radius under stress waves,and then proposed a new,fast,and accurate method for calculating the fracture number using the principle of mass conservation.Through ten rock-breaking tests using LCPTB,the study confirmed the effectiveness of the proposed calculation approach and elucidated the variation rule of explosion pressure,rock-breaking scenario,and the impact of varying parameters on fracture number.The results show that the new calculation method is suitable for fracturing technologies with high pressure rates.Recommendations include enlarging the diameter of the fracturing tube and increasing the liquid CO2 mass in the tube to enhance fracture effectiveness.Moreover,the method can be applied to other fracturing technologies,such as explosive fracturing(EF)within HF formations,indicating its broader applicability and potential impact on optimizing unconventional resource extraction technologies.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0405402)
文摘This paper proposes a structure combined by baffle and submerged breakwater (abbreviated to SCBSB in the following texts). Such a combined structure is conducive to the water exchange in the harbor, and has strong capability on wave dissipation. Our paper focuses on the discussion of two typical structures, i.e., the submerged baffle and rectangular breakwater combined with the upper baffle respectively, which are named as SCBSB 1 and SCBSB2 for short. The eigenfunction method corrected by experimental results is used to investigate the wave dissipation characteristics. It shows that the calculated results agree well with the experimental data and the minimum value of the wave transmission coefficient can be obtained when the distance between the front and rear structures is from 1/4 to 1/2 of the incident wave length.
基金This research was conducted at the College of Mechanical and Electronic Engineering,Northwest A&F University and was supported by the National Key Research and Development Plan Program(2016YFD0700503).
文摘To address the problems of difficult leveling and poor stability of hill crawler tractors,an attitude adjustment device based on a parallel four-bar mechanism was designed,and the mechanical reasons for the sideslip instability of hill crawler tractors were analyzed.On this basis,a posture adjustment mechanism based on a parallel four-bar mechanism was proposed,and the structure of the complete attitude adjustment device was designed.To ensure that this device meets the strength requirements during operation,a mechanical analysis of the key components(active rocker and slave rocker)was carried out to accommodate the load during leveling.Based on ANSYS software,a finite element simulation analysis was used to determine the maximum stress position of the active and slave rockers.Finally,to verify the accuracy of the above simulation analysis results and determine the influence rules of the lateral slope angle,longitudinal slope angle and loading quality on the abovementioned maximum stress,a physical model test bench of the attitude adjustment device was built.An orthogonal regression experiment was carried out with the maximum stresses of the active and slave rockers as the test indices.The experimental data were analyzed by Design-Expert 10 software,and the results show that the order of the primary and secondary factors influencing the maximum stress of the active rocker was the loading mass,lateral slope angle and longitudinal slope angle.The order of the factors influencing the maximum stress of the slave rocker was the longitudinal slope angle,lateral slope angle and loading mass.The active and slave rockers meet the strength requirements.This work provides technical support for the production of hill crawler tractor physical prototypes.
基金Supported by the China National Science and Technology Major Project(2016ZX05014-003-004)
文摘Based on the characteristics of injection-production units in fractured-vuggy carbonate reservoirs,nine groups of experiments were designed and performed to analyze the interference characteristics and their influencing factors during water flooding.Based on percolation theory,an inversion model for simulating waterflooding interferences was proposed to study the influence laws of different factors on interference characteristics.The results show that well spacing,permeability ratio,cave size,and cave location all affect the interference characteristics of water flooding.When the cave is located in high permeability fractures,or in the small well spacing direction,or close to the producer in an injection-production unit,the effects of water flooding are much better.When the large cave is located in the high-permeability or small well spacing direction,the well in the direction with lower permeability or smaller well spacing will see water breakthrough earlier.When the cave is in the higher permeability direction and the reserves between the water injector and producer differ greatly,the conductivity differences in different injection-production directions are favorable for water flooding.When the injection-production well pattern is constructed or recombined,it’s better to make the reserves of caves in different injection-production directions proportional to permeability,and inversely proportional to the well spacing.The well close to the cave should be a producer,and the well far from the cave should be an injector.Different ratios of cave reserves to fracture reserves correspond to different optimal well spacings and optimal permeability ratios.Moreover,both optimal well spacing and optimal permeability ratio increase as the ratio of cave reserves to fracture reserves increases.
基金This study has been supported by the National Natural Science Foundation of China(Grant No.41672295)Science and Technology Project of Department of Transportation of Sichuan Province(Grant No.2015B1-1)+1 种基金Sichuan Provincial Science and Technology Plan Project(Grant No.2017JY0264)Scientific and Technological Research and Development Plan of China Railway Corporation(Grant No.P2018G047).
文摘Phyllite fragments are essential for accumulating and generating talus slope at the toes of hillslopes,however,how they are linked to slope failure remains unknown.This paper reports the directional arrangement of phyllite fragments(DAPF)in phyllite talus slope at the eastern margin of the Tibetan Plateau.Field investigation,mathematical statistics and model experiments were performed in order to systematically understand the influencing factors,which include fragment shape,flat ratio,dip angle(α),and fine particle content(c).The results show that the quadrilateral fragmentgenerates a similar imbricate structure more easily than the triangular and rod fragments in the phyllite talus slope.Additionally,the flat phyllite fragments easily accumulate as imbricated structures on the phyllitetalus slope.When the dip angle(α)is in the range of 20°–30°,the minimum orientation ratio(P)is more than 50%,which means thatthe DAPF phenomenon is more obviousin the phyllite talus slope.For the fine particle content(c)at the same dip angle(α),the minimum orientation ratio(P)is 54%,and the minimum orientation ratio(P)correlates positively with the fine particle content(c).Therefore,compared with the homogeneous talusslope,the phyllite talusslopedisplays a special DAPF phenomenon.This study provides a valuable reference and presents novel knowledgefor risk assessment and engineering design against the phyllite talus slope failure mechanism.
基金financially supported by the National Key R&D Program of China (Grant No.2018YFB1501900)the Shandong Provincial Natural Science Foundation (Grant No.ZR2021ZD23)+3 种基金Qingdao Postdoctoral Program (Grant No.QDBSH20220201015)the Fundamental Research Funds for the Central Universities (Grant No.202313031)the National Natural Science Foundation of China (Grant No.52071303)the Taishan Scholars Program of Shandong Province (Grant No.ts20190914)。
文摘As an important wave energy converter(WEC),the double-buoy device has advantages of wider energy absorption band and deeper water adaptability,which attract an increasing number of attentions from researchers.This paper makes an in-depth study on double-buoy WEC,by means of the combination of model experiment and numerical simulation.The Response Amplitude Operator(RAO)and energy capture of the double-buoy under constant power take-off(PTO)damping are investigated in the model test,while the average power output and capture width ratio(CWR)are calculated by the numerical simulation to analyze the influence of the wave condition,PTO,and the geometry parameters of the device.The AQWA-Fortran united simulation sy stem,including the secondary developme nt of AQWA software coupled with the flowchart of the Fortran code,models a new dynamic system.Various viscous damping and hydraulic friction from WEC system are measured from the experimental results,and these values are added to the equation of motion.As a result,the energy loss is contained in the final numerical model the by united simulation system.Using the developed numerical model,the optimal period of energy capture is identified.The power capture reaches the maximum value under the outer buoy's natural period.The paper gives the peak value of the energy capture under the linear PTO damping force,and calculates the optimal mass ratio of the device.
基金supported by the National Natural Science Foundation of China (Grant No.51079044)
文摘The hydrodynamic lifting force acting on a gate with high head is one of the key factors concerning the safety and reliability of gates. The lifting force is closely related to hydrodynamic pressure, and generally, is obtained through the model test. This work presents a method of numerical simulation based on the VOF method for the flow and FEM for the structure of a gate to investigate this kind of the lifting force. The physical model experiments were conducted about the hydrodynamic pressure and the lifting force to verify the numerical results. The comparisons of those two methods show that the maximum relative error is smaller than 11.40 % and the method presented in this paper is feasible and could be used in the designs of hydropower projects.
基金supported by Tsinghua University Initiative Scientific Research Program (Grant No. 2009THZ07060)the State Key Laboratory of Hydroscience and Engineering of Tsinghua University (Grant No. 2010-TC-2,2009-TC-2)
文摘Surface vortex behavior in front of the tunnel intake was investigated in this paper.The critical submergence of vortex was discussed based on the concept of 'critical spherical sink surface'(CSSS).The vortex formation and evolution at the tunnel intake were analyzed based on the theory of CSSS considering the effect of circulation.A theory was proposed to explain the surface vortex.The theoretical development was verified by the physical model experiments of Xiluodu hydropower station.The radial velocity and vortex circulation were considered as the main factors that influence the formation and evolution of surface vortex.Finally,an anti-vortex intake configuration was proposed to weaken the air-core vortex in front of the tunnel intakes of the hydraulic structures.
基金supported by the National Natural Science Foundation of China(Grant Nos.11832009,12172095,and 11902085)the Natural Science Foundation of Guangdong Province(Grant No.2021A1515010320)We are also very grateful to the anonymous reviewers for their contributions.