The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an ana...The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.展开更多
Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and ...Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and intensity of precipitation.A large-scale model experiment was conducted on a self-designed physical simulation experiment platform to investigate the failure and instability of high-steep rock slopes under unsaturated conditions.The real-time reproduction of the progressive failure process in high-steep rock slopes enabled the determination of the critical rainfall intensity and revealed the mechanism underlying slope instability.Experiment results indicated that rainfall may be the primary factor contributing to rock mass instability,while continuous pillar mining exacerbates the extent of rock mass failure.The critical failure stage of high-steep rock slopes occurs at a rainfall intensity of 40 mm/h,whereas a rainfall exceeding 50 mm can induce critical instability and precipitation reaching up to 60 mm will result in slope failure.The improved region growing segmentation method(IRGSM)was subsequently employed for image recognition of rock mass deformation in underground mines.Herein an error comparison with the simple linear iterative cluster(SLIC)superpixel method and the original region growing segmentation method(ORGSM)showed that the average identification error in the X and Y directions by the method was reduced significantly(1.82%and 1.80%in IRGSM;4.70%and 6.26%in SLIC;9.45%and 12.40%in ORGSM).Ultimately,the relationship between rainfall intensity and failure probability was analyzed using the Monte Carlo method.Moreover,the stability assessment criteria of rock slope under unsaturated condition were quantitatively and accurately evaluated.展开更多
Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the ...Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects.展开更多
文摘The closure of a turbulence field is a longstanding fundamental problem, while most closure models are introduced in spectral space. Inspired by Chou's quasi-normal closure method in spectral space, we propose an analytical closure model for isotropic turbulence based on the extended scale similarity theory of the velocity structure function in physical space. The assumptions and certain approximations are justified with direct numerical simulation. The asymptotic scaling properties are reproduced by this new closure method, in comparison to the classical Batchelor model.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(No.42277154)the project supported by graduate research and innovation foundation of Chongqing,China(No.CYB22023)+3 种基金Guizhou Province Science and Technology Planning Project(No.Guizhou science and technology cooperation support[2022]common 229)National Natural Science Foundation of Shandong Province of China(NSFC)(No.ZR2022ME188)the State Key Laboratory of Coal Resources and Safe Mining,CUMT(No.SKLCRSM22KF009)Open Fund of National Engineering and Technology Research Center for Development and Utilization of Phosphate Resources of China(No.NECP 2022-04).
文摘Two critical factors,namely intense precipitation and intricate excavation,can trigger rock mass disasters in mining operations.In this study,an indoor rainfall system was developed to precisely regulate the flow and intensity of precipitation.A large-scale model experiment was conducted on a self-designed physical simulation experiment platform to investigate the failure and instability of high-steep rock slopes under unsaturated conditions.The real-time reproduction of the progressive failure process in high-steep rock slopes enabled the determination of the critical rainfall intensity and revealed the mechanism underlying slope instability.Experiment results indicated that rainfall may be the primary factor contributing to rock mass instability,while continuous pillar mining exacerbates the extent of rock mass failure.The critical failure stage of high-steep rock slopes occurs at a rainfall intensity of 40 mm/h,whereas a rainfall exceeding 50 mm can induce critical instability and precipitation reaching up to 60 mm will result in slope failure.The improved region growing segmentation method(IRGSM)was subsequently employed for image recognition of rock mass deformation in underground mines.Herein an error comparison with the simple linear iterative cluster(SLIC)superpixel method and the original region growing segmentation method(ORGSM)showed that the average identification error in the X and Y directions by the method was reduced significantly(1.82%and 1.80%in IRGSM;4.70%and 6.26%in SLIC;9.45%and 12.40%in ORGSM).Ultimately,the relationship between rainfall intensity and failure probability was analyzed using the Monte Carlo method.Moreover,the stability assessment criteria of rock slope under unsaturated condition were quantitatively and accurately evaluated.
基金the National Natural Science Foundation of China(No.42272204)the Fundamental Research Funds for the Central Universities(Grant No.2021JCCXDC02)+3 种基金the Gansu Province Science and Technology Major Project(19ZD2GA005)for their supportfinancially supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering(SKLGDUEK2020)Huaneng Group headquarters science and technology project(HNKJ21-H07)the Coal Burst Research Center of Jiangsu,China。
文摘Pillarless coal mining technology is a new practical technology.Based on the compensating mechanical behavior of the Negative Poisson’s Ratio(NPR)anchor cable on the roof,the roadway was successfully retained by the top cutting and pressure relief technology.This study utilizes the Digital Speckle Monitoring(DIC monitoring),stress-strain monitoring,and infrared thermal imaging systems to conduct physical model experiment of similar materials from the displacement,stress-strain,and temperature fields to investigate in depth the fracture change law of the overlying rock.In addition,it uses FLAC3D numerical simulation to invert the surface displacement settlement.The results show that the non-pillar overhead mining under the 110 mining method has little influence on the rock crack in the middle of the coal seam,and the crack development area is mainly concentrated in the overlying rock mass of the upward coal seam.The compensatory mechanical behavior of NPR anchor cable and the dilatation characteristics of rock mass have a good effect of retaining roadway along goaf,and can also reduce surface settlement.The 110 mining method provides a scientific basis for ecological environment protection and the development of other kilometer deep soft rock high ground stress underground projects.