Type 2 diabetes(T2D)has become a major public health threat across the globe.It has been widely acknowledged that diet plays an important role in the development and management of T2D.Phytoestrogens are polyphenols th...Type 2 diabetes(T2D)has become a major public health threat across the globe.It has been widely acknowledged that diet plays an important role in the development and management of T2D.Phytoestrogens are polyphenols that are structurally similar to endogenous estrogen and have weak estrogenic properties.Emerging evidence from pre-clinical models has suggested that phytoestrogens may have anti-diabetic function via both estrogendependent and estrogen-independent pathways.In the current review,we have summarized the evidence linking two major types of phytoestrogens,isoflavones and lignans,and T2D from epidemiological studies and clinical trials.The cross-sectional and prospective cohort studies have reported inconsistent results,which may due to the large variations in different populations and measurement errors in dietary intakes.Long-term intervention studies using isoflavone supplements have reported potential beneficial effects on glycemic parameters in postmenopausal women,while results from short-term smallsize clinical trials are conflicting.Taken together,the current evidence from different study designs is complex and inconsistent.Although the widespread use of phytoestrogens could not be recommended yet,habitual consumption of phytoestrogens,particularly their intact food sources like soy and whole flaxseed,could be considered as a component of overall healthy dietary pattern for prevention and management of T2D.展开更多
为进一步推动女性科技工作者的影响力与贡献力,时值世界第114个国际劳动妇女节到来之际,IEEE PES WIP(IEEE PES Women in Power)联合《高电压技术》《高压电器》《湖北电力》,面向广大IEEE PES WIP会员征集关于“IEEE PES CHINA WIP高...为进一步推动女性科技工作者的影响力与贡献力,时值世界第114个国际劳动妇女节到来之际,IEEE PES WIP(IEEE PES Women in Power)联合《高电压技术》《高压电器》《湖北电力》,面向广大IEEE PES WIP会员征集关于“IEEE PES CHINA WIP高电压工程与新技术”专题的高水平科技论文。本专题拟于2024年下半年刊发,真诚欢迎广大IEEE PES WIP中国区会员联合国内外专家学者以及国家级科研计划承担单位踊跃投稿!展开更多
为进一步推动女性科技工作者的影响力与贡献力,时值世界第114个国际劳动妇女节到来之际,IEEE PES WIP(IEEE PES Women in Power)联合《高电压技术》《高压电器》《湖北电力》,面向广大IEEE PES WIP会员征集关于“IEEE PES CHINA WIP高...为进一步推动女性科技工作者的影响力与贡献力,时值世界第114个国际劳动妇女节到来之际,IEEE PES WIP(IEEE PES Women in Power)联合《高电压技术》《高压电器》《湖北电力》,面向广大IEEE PES WIP会员征集关于“IEEE PES CHINA WIP高电压工程与新技术”专题的高水平科技论文。本专题拟于2024年下半年刊发,真诚欢迎广大IEEE PES WIP中国区会员联合国内外专家学者以及国家级科研计划承担单位踊跃投稿!展开更多
This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting co...This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.展开更多
文摘Type 2 diabetes(T2D)has become a major public health threat across the globe.It has been widely acknowledged that diet plays an important role in the development and management of T2D.Phytoestrogens are polyphenols that are structurally similar to endogenous estrogen and have weak estrogenic properties.Emerging evidence from pre-clinical models has suggested that phytoestrogens may have anti-diabetic function via both estrogendependent and estrogen-independent pathways.In the current review,we have summarized the evidence linking two major types of phytoestrogens,isoflavones and lignans,and T2D from epidemiological studies and clinical trials.The cross-sectional and prospective cohort studies have reported inconsistent results,which may due to the large variations in different populations and measurement errors in dietary intakes.Long-term intervention studies using isoflavone supplements have reported potential beneficial effects on glycemic parameters in postmenopausal women,while results from short-term smallsize clinical trials are conflicting.Taken together,the current evidence from different study designs is complex and inconsistent.Although the widespread use of phytoestrogens could not be recommended yet,habitual consumption of phytoestrogens,particularly their intact food sources like soy and whole flaxseed,could be considered as a component of overall healthy dietary pattern for prevention and management of T2D.
文摘为进一步推动女性科技工作者的影响力与贡献力,时值世界第114个国际劳动妇女节到来之际,IEEE PES WIP(IEEE PES Women in Power)联合《高电压技术》《高压电器》《湖北电力》,面向广大IEEE PES WIP会员征集关于“IEEE PES CHINA WIP高电压工程与新技术”专题的高水平科技论文。本专题拟于2024年下半年刊发,真诚欢迎广大IEEE PES WIP中国区会员联合国内外专家学者以及国家级科研计划承担单位踊跃投稿!
文摘为进一步推动女性科技工作者的影响力与贡献力,时值世界第114个国际劳动妇女节到来之际,IEEE PES WIP(IEEE PES Women in Power)联合《高电压技术》《高压电器》《湖北电力》,面向广大IEEE PES WIP会员征集关于“IEEE PES CHINA WIP高电压工程与新技术”专题的高水平科技论文。本专题拟于2024年下半年刊发,真诚欢迎广大IEEE PES WIP中国区会员联合国内外专家学者以及国家级科研计划承担单位踊跃投稿!
文摘This study focused on the development and characterization of TiO<sub>2</sub>-PES composite fibers with varying TiO<sub>2</sub> loading amounts using a phase inversion process. The resulting composite fibers exhibited a sponge-like structure with embedded TiO<sub>2</sub> nanoparticles within a polymer matrix. Their photocatalytic performance for ammonia removal from aqueous solutions under UV-A light exposure was thoroughly investigated. The findings revealed that PeTi8 composite fibers displayed superior adsorption capacity compared to other samples. Moreover, the study explored the impact of pH, light intensity, and catalyst dosage on the photocatalytic degradation of ammonia. Adsorption equilibrium isotherms closely followed the Langmuir model, with the results indicating a correlation between qm values of 2.49 mg/g and the porous structure of the adsorbents. The research underscored the efficacy of TiO<sub>2</sub> composite fibers in the photocatalytic removal of aqueous under UV-A light. Notably, increasing the distance between the photocatalyst and the light source resulted in de-creased hydroxyl radical concentration, influencing photocatalytic efficiency. These findings contribute to our understanding of TiO<sub>2</sub> composite fibers as promising photocatalysts for ammonia removal in water treatment applications.