Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in v...Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of this project. Precipitation and essential climate variable-soil moisture (ECV-SM) conditions are typically considered to be the main drivers of vegetation growth in this region. Although many studies have investigated the inter-annual variations of vegetation growth, few concerns have been focused on the annual and seasonal variations of vegetation growth and their climatic drivers, which are crucial for understanding the relationships among the climate, vegetation, and human activities at the regional scale. Based on the normalized difference vegetation index (NDVI) derived from MODIS and the corresponding climatic data, we explored the responses of vegetation growth to climatic factors at annual and seasonal scales in the BTSSCP region during the period 2000–2014. Over the study region as a whole, NDVI generally increased from 2000 to 2014, at a rate of 0.002/a. Vegetation growth is stimulated mainly by the elevated temperature in spring, whereas precipitation is the leading driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. The warming in spring promotes vegetation growth but reduces ECV-SM. Summer greening has a strong cooling effect on land surface temperature. These results indicate that the ecological and environmental consequences of ecological restoration projects should be comprehensively evaluated.展开更多
Ecological environment issues caused by soil erosion have always been the attractive and significant problems all over the world.Under the background of global warming,debris flow,landslide,and other intense gravitati...Ecological environment issues caused by soil erosion have always been the attractive and significant problems all over the world.Under the background of global warming,debris flow,landslide,and other intense gravitational erosion activities have become aggravated,which leads to the decrease of biological diversity,ecosystem stability,resistance,productivity,and the like,which presents new challenges to traditional measures of soil and water conservation.This article,based on research conducted on controlling mountain hazard on the Xiaojiang River basin over the last 30 years,summarizes the managerial achievement of typical ecological engineering technologies and analyzes the principles and application of each type of treatment.The results indicated that established ecological engineering technologies play a significant role in the prevention and treatment of intense gravitational erosion caused by mountain hazard.However,there are still a great deal of limitation of application condition and maneuverability during management process.How to furtherly develop the rational combining pattern between ecological engineering(e.g.contour hedgerow)and geotechnical engineering(e.g.slit dam)and how to strengthen the risk control and improve management strategy will be the key points for preventing intense gravitational erosion in future by ecological engineering.展开更多
基金financially supported by the National Natural Science Foundation of China (31560135, 41361100)the Discipline Construction Fund Project of Gansu Agricultural University (GAU-XKJS-2018-104, GAU-XKJS-2018-108)the Gansu Science and Technology Support Program (1604FKCA088)
文摘Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of this project. Precipitation and essential climate variable-soil moisture (ECV-SM) conditions are typically considered to be the main drivers of vegetation growth in this region. Although many studies have investigated the inter-annual variations of vegetation growth, few concerns have been focused on the annual and seasonal variations of vegetation growth and their climatic drivers, which are crucial for understanding the relationships among the climate, vegetation, and human activities at the regional scale. Based on the normalized difference vegetation index (NDVI) derived from MODIS and the corresponding climatic data, we explored the responses of vegetation growth to climatic factors at annual and seasonal scales in the BTSSCP region during the period 2000–2014. Over the study region as a whole, NDVI generally increased from 2000 to 2014, at a rate of 0.002/a. Vegetation growth is stimulated mainly by the elevated temperature in spring, whereas precipitation is the leading driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. The warming in spring promotes vegetation growth but reduces ECV-SM. Summer greening has a strong cooling effect on land surface temperature. These results indicate that the ecological and environmental consequences of ecological restoration projects should be comprehensively evaluated.
文摘Ecological environment issues caused by soil erosion have always been the attractive and significant problems all over the world.Under the background of global warming,debris flow,landslide,and other intense gravitational erosion activities have become aggravated,which leads to the decrease of biological diversity,ecosystem stability,resistance,productivity,and the like,which presents new challenges to traditional measures of soil and water conservation.This article,based on research conducted on controlling mountain hazard on the Xiaojiang River basin over the last 30 years,summarizes the managerial achievement of typical ecological engineering technologies and analyzes the principles and application of each type of treatment.The results indicated that established ecological engineering technologies play a significant role in the prevention and treatment of intense gravitational erosion caused by mountain hazard.However,there are still a great deal of limitation of application condition and maneuverability during management process.How to furtherly develop the rational combining pattern between ecological engineering(e.g.contour hedgerow)and geotechnical engineering(e.g.slit dam)and how to strengthen the risk control and improve management strategy will be the key points for preventing intense gravitational erosion in future by ecological engineering.